РАЗРАБОТКА ПРИБОРА УПРАВЛЕНИЯ И КОНТРОЛЯ РАБОТЫ СБОРНОЙ СИЛОВОЙ АКБ МНОГОРОТОРНЫХ ЛЕТАЮЩИХ ПЛАТФОРМ

Автор

Ануфриева Елизавета Юрьевна ГБОУ СОШ №72 11 «А» класс

Руководитель

Павлов Роман Александрович Учитель физики ГБОУ СОШ №72

Содержание

- Виды мультикоптеров
- Применение
- История
- Преимущества и недостатки
- Постановка и решение задачи
- Эксперимент
- Описание прибора, конструкция
- Выводы

Виды мультикоптеров

Трикоптер (3-винтовой)

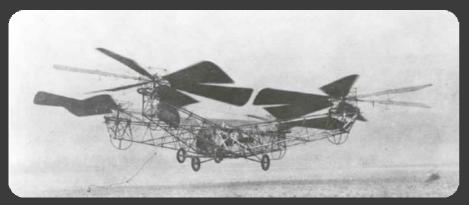
Квадрокоптер (4-винтовой)

Декакоптер (6-винтовой)

Октокоптер (8-винтовой)

Применение

«Огненная буря» помогает службам пожарной безопасности. Главная его роль заключается в обнаружении людей в горящих зданиях.



«Снежный циклоп» способен предотвратить сход лавины путем обнаружения зон риска.

«Колибри» используется в сельском хозяйстве. Разведывает поля и отправляет данные фермерам.

История

Квадрокоптер Ботезата, 1923г.

Появление электрических коптеров стало возможным из-за значительного прогресса в области АКБ, двигателей и электронных блоков управления.

Двигатели

DJI F 550 с видом на NAZA, АКБ и двигатели.

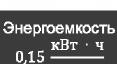
LiPo АКБ 11.1 V 5 А· ч

Полетный контроллер NAZA 1.0 V

преимущества и

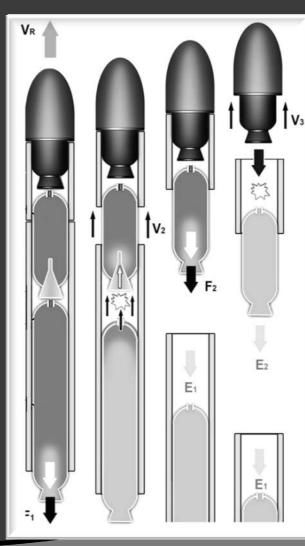
Преимущества Преимущества по сравнению с вертолетами с ДВС

Преимущества	Недостатки
Не требует дополнительного оборудования	Меньшая мощность и энергоемкость
Отсутствие горюче- смазочных материалов и выхлопных газов	Снижение тяги по мере разрядки АКБ
Тихая работа двигателей	Пожароопасность литиевых АКБ
	Хрупкость и дороговизна АКБ



Постановка и решение задачи

Применение составной АКБ со сбрасываемыми частями, по аналогии с сбрасываемыми ступенями ракеты.


Энергоемкость $12 \frac{\kappa B \tau \cdot \tau}{\kappa \tau}$

Энергия на удержание многороторных платформ

Связь массы электрического вертолета с массой АКБ и полетным временем

Количество секций АКБ

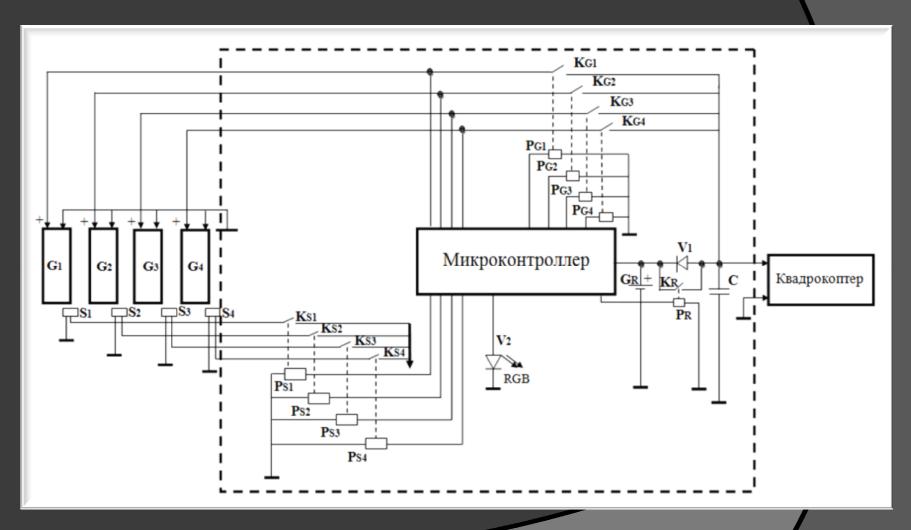
$$P = k \cdot m$$
 $k \approx 200 \frac{\mathrm{BT}}{\mathrm{K}\mathrm{\Gamma}}$
 $I = \frac{P}{U}$

Квадрокоптер с 4-мя АКБ

Сброс секции АКБ

Эксперимент

Сравнение времени полета, мин.								
4 АКБ соединены параллельно		Сборная и контро	Итого					
Время полета: 17,6	Кол-во АКБ	1 АКБ	2 АКБ	3 АКБ	4 АКБ			
	Время	4,4	9,2	12,6	16,3	42,5		
	Прирост времени	-	4,8	8,2	11,9	24,9		



Описание прибора

Принципиальная схема прибора

Выводы

В результате проведенной работы были получены следующие результаты:

- проведен обзор развития многороторных летающих платформ с электрической силовой установкой;
- рассмотрены существующие виды и типы подобных платформ, их достоинства и принципиальные недостатки;
- предложен вариант оптимизации массово-мощностных параметров путем применения составной АКБ для увеличения времени полета;
- произведен расчет основных параметров АКБ, с целью получения минимального потребления энергии и максимального времени полета;
- практически показана возможность применения такого прибора для управления и контроля составной АКБ на могороторных платформах;
- рассмотрены пути совершенствования и перспективы развития энергетической эффективности многороторных систем.