
WEB SERVER PERFORMANCE WITH CUBIC AND COMPOUND TCP

Alae Loukili, Alexander Wijesinha, Ramesh K. Karne, and Anthony K. Tsetse

Towson University

Department of Computer & Information Sciences

Towson, MD 21252

USA

{aloukili, awijesinha, rkarne, atsetse}@towson.edu

ABSTRACT
TCP congestion control mechanisms are used to prevent

traffic volume from exceeding network resource limits.

Consequently, they indirectly impact the performance of

Web servers in a congested network. Systems running

under Windows and Linux, including Web servers, use

respectively the Compound and Cubic TCP congestion

control variants that are designed for high-speed long-

delay networks. We evaluate the performance under

congestion of the popular Windows-based IIS and Linux-

based Apache Web servers when serving a single request

from a browser. Specifically, we conduct experiments in a

real test network with several routers to compare delay,

throughput and shared bandwidth percentage when the

Web server is subjected to various workloads under

different levels of background network traffic. We find

that IIS with Compound TCP has performance advantages

over Apache with Cubic TCP when the two servers

compete for bandwidth, but Apache has smaller delays

than IIS for large and medium-sized files.

KEY WORDS

TCP congestion control, Cubic TCP, Compound TCP

Web server performance, high bandwidth-delay product

networks.

1 Introduction

Most applications today use the transport protocol TCP

for communication on LANs and on the Internet. TCP

provides reliable data transmission with flow and

congestion control. Congestion control algorithms are

used to estimate the level of congestion in the network by

using loss-based and delay-based techniques. Congestion

management is the most complex aspect of TCP; it has

been extensively researched and continues to be studied

today. Recent research has focused on managing

congestion in high-speed long-delay i.e., high bandwidth-

delay product (BDP) networks.

The most used TCP congestion control variants are

Compound TCP on Windows and Cubic TCP on Linux.

Many simulation and real-world studies have confirmed

that these two algorithms exhibit good performance and

are especially suited for the high BDP networks they

target. However, no studies have been done that examine

the impact of these two algorithms on the performance of

Web servers with browser requests under different

workloads, and in the presence of background traffic, by

conducting experiments using a real network.

We study the performance of the popular IIS and

Apache Web servers that respectively implement Cubic

Compound and Cubic TCP congestion control in a test

network with several routers. We send HTTP requests to

the Web servers using a Web browser (Internet Explorer

or Mozilla Firefox) under varying levels of server load

and background traffic to create network congestion. The

server workload and background network traffic consists

of a mix of HTTP/TCP and UDP traffic generated using

the freely-available tools http_load and Mgen

respectively. Performance is measured by determining

delay, throughput, and shared bandwidth percentage using

a Wireshark packet analyzer and http_load. We only

compare performance of the default (preconfigured)

installations of the two congestion control algorithms (i.e.,

without making any adjustments to preset parameters).

The main finding is that IIS with Compound TCP

performs better than Apache with Cubic TCP when the

two servers compete for bandwidth, but Apache has lower

delays than IIS for large and medium-sized files.

The rest of the paper is organized as follows. In

Section 2, we discuss related work. In Section 3, we

describe the experimental setup. In Section 4, we present

and discuss the results, and in Section 5, we give the

conclusion.

2 Related Work

Numerous studies have been conducted on the congestion

control aspects of TCP. For example in [1], the TCP

congestion window update algorithm is modified to

address the issue of RTT-fairness, and it is shown by a

combination of analysis, simulation and testbed studies

that protocol stability and efficiency are maintained. In

[2], simulation studies are used to show that an existing

TCP variant is suited for use on the local segment of a

spliced connection to address the needs of wireless

multimedia flows with home entertainment centers. While

many variants of its basic “Reno” congestion control

algorithm [3] have been proposed, relatively few have

seen large-scale deployment in real-world networks.

Two notable exceptions are Compound TCP [4, 5] used

by the Windows operating system and Cubic TCP [6]

used by the Linux operating system that attempt to

address the needs of today’s high BDP networks.

Compound TCP (also known as C-TCP) modifies the

basic congestion control algorithm by adding a scalable

term to the congestion control window based on the

standard “Vegas” estimate of network buffering. In

contrast, Cubic TCP models the congestion window as a

cubic function of the time since the last detected loss that

also depends on the congestion window size prior to that

loss. While both variants are known to perform well under

congestion in high BDP networks and have good fairness

properties, Compound TCP may not treat all flows

equally and Cubic TCP may have sub-optimal network

utilization and increase packet loss [7].

Our study examines performance of the IIS and Apache

Web servers with their respective Compound and Cubic

TCP variants under different workloads for a single

browser request in a network when there are competing

flows and other background traffic. Most TCP studies of

its congestion control variants use simulation. For

example, [8] and [9] study the performance of the two

variants using a simulation tool. However, [10] suggests

that simulation studies may not reflect the complexity of

TCP protocol behavior with traffic in a real network.

Also, in [11] it is observed that real implementations of

congestion control algorithms often make changes to parts

of the TCP stack that are not directly related to the

congestion algorithm to improve overall performance. We

consider “out-of-the-box” (i.e., default) implementations

of TCP in the two most popular Web servers and their

operating systems running on real hardware. Finally, we

use background traffic in accordance with the guidelines

in [12] to study performance of the two TCP variants.

3 Experimental Setup

3.1 Test Network and Traffic Generation

For our experiments, we used a network of clients

connected to a network of servers via four Linux routers

R1-R4 and five Ethernet switches S0-S5 as shown in Fig.

1. Details of the hardware and software used for the

experiments are given in Table 1. All NICs and switches

are 1 Gbps except for R1’s NIC on its internal (i.e., client

network side) interface, and switch S0, that are 100 Mbps

in order to cause congestion. In the absence of other

traffic, the RTT between routers R1 and R4 is

approximately 0.3 ms.

The Web browser on the client (referred to as “Client” in

the figure) sent a single request for a 504, 320, or 160 KB

file (to represent large, medium and small files

respectively) to the Web server (referred to as “Server” in

the figure) in the presence of background traffic on the

network and stress traffic to the Web server “Server” as

described below. The experiments were done using

Mozilla Firefox and repeated using Internet Explorer as

the browser on “Client”. Since the results with both

browsers were similar, only the results using Firefox are

reported.

The congestion scenarios for the experiments (described

below) were created using the test network in Fig. 1 (or

minor variations of it) by generating traffic as follows.

For background traffic, a mix of UDP and HTTP/TCP

traffic was generated using the Mgen [13] and http_load

[14] generators respectively: the “Mgen Source” sent

UDP packets to the “Mgen Sink” at varying rates, and a

background traffic client (referred to as “BT Client”) sent

multiple HTTP requests at varying rates via http_load for

a 320 KB file to a background traffic Web server (referred

to as “BT Server”). In addition, stress traffic in the form

of competing requests to the Web server “Server” at

varying rates for a 320 KB file was generated by a client

(referred to as “Stress Client”) using http_load. The

combination of background and stress traffic creates a

traffic mix for examining the behavior of the two

congestion control variants.

3.2 Congestion Scenarios

We studied performance of the Apache/Linux and

IIS/Windows Web servers with their respective TCP

congestion control approaches (Cubic TCP and

Compound TCP) by sending browser requests to the

servers under three congestion scenarios C1, C2, and C3.

The scenarios create different mixes of background and

stress traffic on the network totaling 100 Mbps in each

case as described below.

C1: Background traffic is 10 Mbps of UDP traffic from

Mgen Source to Mgen Sink, and 40 Mbps of HTTP/TCP

traffic generated by requests from BT Client to BT Server

i.e., the background traffic is 20% UDP and 80% TCP.

The Web server “Server” additionally has a workload of

50 Mbps of HTTP/TCP stress traffic due to requests from

Stress Client.

C2: Background traffic is 15 Mbps of UDP traffic from

Mgen Source to Mgen Sink, and 60 Mbps of HTTP/TCP

traffic generated by requests from BT Client to BT Server

i.e., the background traffic is 20% UDP and 80% TCP.

The Web server “Server” additionally has a workload of

25 Mbps of HTTP/TCP stress traffic due to requests from

Stress Client.

C3: Background traffic is 10 Mbps of UDP traffic from

Mgen Source to Mgen Sink, and 30 Mbps of HTTP/TCP

traffic generated by requests from BT Client to BT Server

i.e., the background traffic is 25% UDP and 75% TCP.

The Web server “Server” additionally has a workload of

60 Mbps of HTTP/TCP stress traffic due to requests from

Stress Client.

The differences between the scenarios can be

characterized as follows: for UDP background traffic,

scenarios C3 and C1 have the same levels, while C2 has 5

Mbps more. For TCP background traffic, C2 has 20 Mbps

more than C1, which has 10 Mbps more than C3. For TCP

stress traffic, C3 has 10 Mbps more than C1, which has 25

Mbps more than C2.

Comparing TCP stress traffic and the total (TCP and

UDP) background traffic, C1 has the same levels, while

C3 has 60% stress and 40% background, and C2 has 75%

background and 25% stress.

For all three scenarios, we start Mgen, run http_load on

Stress Client and BT Client, and send a single request

from the Web browser on “Client” to the Web server on

“Server”. The Wireshark packet analyzer is used on the

server side to measure delay and throughput. Information

from http_load running on the Stress and BT Clients is

used to compute throughput on the client side. Measuring

the throughput on both the client and server side enables

the impact of congestion control with and without

network delays to be studied.

4 Experimental Results

In this section, we present the results from experiments to

test the performance of the Apache and IIS Web servers,

which run Cubic TCP and Compound TCP respectively.

We conduct experiments with competing flows, where

background traffic and stress traffic use the same or

different server types (IIS or Apache), or where two

browsers send requests to different server types. Traffic is

generated based on the three congestion scenarios C1, C2

and C3 described above, and each experiment consists of

requesting a large, medium or small file (of size 504, 320

and 160 KB respectively). All results reported are the

average of three repeated stable runs of each experiment;

the results averaged were not significantly different.

Figure 1. Test Network

Table 1

Hardware and Software Specification

Device/Function Details

Switch S0 Netgear/FSM726S

Switch S1 Cisco/SG100d-08

Switch S2 Linksys/EG005W

Switch S3 Cisco/SG100d-08

Switch S4 Netgear/GS108T

Packet Analyzer Dell OPTEPLEX GX520;XP/

Wireshark Version 1.2.7

(SVN Rev 32341)

Servers Dell OPTEPLEX GX520;

Windows server 2008 (IIS 7);

Fedora 12 (Constantine)

Kernel Linux 2.6.31.5-

127.fc12.i686

Apache HTTP Server 2.2.16

Mgen source Dell OPTEPLEX GX260;

Windows XP Professional

2002 SP3

Mgen sink Dell OPTEPLEX GX260;

CentOS Version 2.16.0

Clients Dell OPTEPLEX GX520;

Windows XP Professional

2002 SP3;

Linux Fedora 12 Kernel

2.6.31.5-127.fc12.i686;

browser: Firefox v3.6.7,

Internet Explorer

8.0.6001.18702

Routers Dell OPTEPLEX GX520;

Fedora 12 Kernel Linux

2.6.31.5-127.fc12.i686

4.1 Same Server Type

In the first set of experiments, Server and BT Server are

the same type i.e., both are Apache or both are IIS. Traffic

is generated according to the congestion scenarios C1, C2

and C3. Figs. 2-4 show the delay for a single browser

request, and Figs. 5-7 show the server throughput using

large, medium and small files respectively.

The server delay includes the processing time and the

delays introduced by the congestion control algorithm.

The former depends on the total workload (the file size,

the total number of bytes processed, and the OS/server

implementation), and the latter depends on the congestion

level and the characteristics of the algorithm. Observed

delays may be due to a combination of factors. For

example, a more aggressive backoff policy to address

increased congestion is compensated for by smaller delays

due to the reduction in traffic and packet loss.

Let t_server(C) denote the total server delay in responding

to the browser request for a scenario C. Fig. 2 shows that

for large files, t_IIS(C3) > t_IIS(C1) ≈ t_IIS(C2) ≈

t_Apache(C2) > t_Apache(C3) > t_Apache(C1). For IIS,

when serving a large file, an increase in the workload due

to stress traffic increases the delay as expected in scenario

C3 over scenario C1.

However, comparing scenario C1 with C2, the stress

traffic is reduced by 50% in scenario C2, and the

background traffic is increased by 50%, but there is no

difference in the delay. This appears to suggest that

Compound TCP has reduced the transmission rate due to

congestion resulting in a delay that is the same as the

delay for C1. For Apache, the relative performance for

scenarios C1 and C3 is the same as for IIS, but the

congestion due to the increased background traffic in C2

has resulted in larger delay than in C1. This means that

Cubic TCP reduces its transmission rate more

aggressively than IIS when congestion increases, resulting

in a greater delay to serve a large file.

For medium files, Fig. 3 shows that t_IIS(C3) ≈ t_IIS(C1)

> t_IIS(C2) > t_Apache(C3) ≈ t_Apache(C1) >

t_Apache(C2). In this case, the additional stress traffic in

C3 compared to C1 did not increase the delay because the

requested file size is smaller and because both congestion

control variants have reduced the transmission rate in C1

due to the increased background traffic. In the case of

scenario C2, the reduced file size and the highest level of

background traffic result in the least delay because each

congestion variant has reduced its transmission rate

sufficiently.

For small files, Fig. 4 shows that t_IIS(C1) <

t_Apache(C1) ≈ t_IIS(C3) < t_IIS(C2) < t_Apache(C2) <

t_Apache(C3). Here, the delays for scenarios C1 are less

than for C3 as expected since it has less stress traffic, but

the delay for C2 is larger than for C1 with both servers.

Since the file size is small, the increased delays for C2 are

due to reducing the transmission rate because of the

congestion caused by the additional background traffic. In

this case, Cubic TCP has a larger delay than Compound

TCP because it is reducing its transmission rate more

aggressively.

In general, the above results indicate that the Apache

server is more efficient than IIS for large and medium

files, but less efficient for small files. They also indicate

that the Apache server has reduced performance

compared to IIS when congestion increases as in scenario

C2. This is because Cubic TCP adopts a more

conservative approach than Compound TCP when losses

are detected. More studies with a variety of congestion

scenarios are needed to validate this claim.

In Figs. 5-7, NRT refers to the server throughput

when retransmissions are ignored. It is seen that scenario

C2 has the lowest and scenario C3 has the highest server

throughput regardless of file size as would be expected.

However, throughput for IIS is slightly higher than the

corresponding throughput for Apache in all cases. This

suggests that Compound TCP (IIS/Windows) may be

transmitting more aggressively under congestion than

Cubic TCP (Apache/Linux) since the throughput is higher

even for large and moderate file sizes (when delays for

IIS were higher). The throughput in each scenario for all

file sizes is about the same because the stress traffic level

in each scenario is the same, and the difference between

the small, medium and large file sizes used for the single

request made by the browser does not affect the

throughput.

Fig. 8 shows the throughput measured at the Stress and

BT clients with a request for a 320 KB file. As with server

throughput, client throughput is also almost identical for

the three file sizes, so only the results for one file size are

shown here. While client throughput is less than server

throughput due to network delay, relative relationships

between throughput values are not preserved. For

example in scenario C1, IIS and Apache throughput

measured at the client is about the same, whereas IIS NRT

throughput measured at the server side is slightly higher

than the Apache NRT throughput (Fig. 6). This difference

could be insignificant or due to a slightly lower packet

loss with IIS (and hence fewer retransmissions by the IIS

server). More detailed studies are needed to understand

the relation between Compound and Cubic TCP, and the

differences in observed throughput at the client and the

server.

Figure 2. Server delay: 504 KB

Figure 3. Server delay: 320 KB

Figure 4. Server delay: 160 KB

Figure 5. Server throughput: 504 KB

Figure 6. Server throughput: 504 KB

Figure 7. Server throughput: 160 KB

Figure 8. Client throughput: 320 KB

Table 2 shows the bandwidth percentage shared between

the Stress Traffic (ST) and Background Traffic (BT)

servers. For IIS, each server gets roughly an equal share

of the bandwidth, whereas for Apache, one of the two

servers is always getting a larger share. For instance in

scenario C1, the maximum possible rates are 50 Mbps of

TCP stress traffic and 40 Mbps of TCP background

traffic. For IIS, 84.1% of the maximum stress traffic rate

and 87% of the maximum background traffic rate are

achieved, which is a 2.9% difference. For Apache, 84.4%

of the maximum stress traffic rate and 93.9% of the

maximum background traffic are achieved, which is a

9.5% difference. This result shows that Compound TCP

enables better sharing of the available bandwidth with

another like flow (i.e., Compound TCP) than Cubic TCP.

Table 2

Shared bandwidth percentage (same server type)

Scenario ST IIS BT IIS ST Apache BT Apache

C1 84.1 87.0 84.4 93.9

C2 88.5 89.9 95.7 87.0

C3 83.6 88.3 85.7 95.9

4.2 Different Server Types

In the second set of experiments, a file of the same size

(504 KB) is requested by the browser under all three

congestion scenarios. For these experiments, Server and

BT Server are of different types (i.e., Server is IIS and BT

Server is Apache, or Server is Apache and BT Server is

IIS).

Figure 9. Delay (different servers): 504 KB

Figure 10. Server throughput (different servers): 504 KB

In Fig. 9, it is seen that for scenario C2 (in which

background traffic is at its highest level), the delay for

Apache when serving a single browser request is 3 times

that for IIS when the stress and background servers are of

different types. In contrast, for scenarios C1 and C3, the

IIS delay is only slightly larger than the Apache delay.

Comparing with the case when the servers were of the

same type (Fig. 2), the IIS delays for C1 and C3 are larger

than for Apache, but the difference between IIS and

Apache for C2 is insignificant. It therefore appears that

the reduction in the transmission rate under congestion is

larger for Cubic TCP (Apache) than it is for Compound

TCP (IIS).

Figure 11. Client throughput (different servers): 504 KB

In Figs. 10 and 11, server and client NRT throughput with

different server types is similar to the result with servers

of the same type (Figs. 5 and 8). The IIS server now has

slightly larger throughput than Apache for all scenarios.

Table 3

Shared bandwidth percentage (different servers)

Scenario

ST IIS

BT Apache ST Apache BT IIS

C1 90.7 84.3 83.5 96.8

C2 97.1 86.4 87.4 90.0

C3 85.7 85.8 85.2 98.0

Table 3 shows the bandwidth percentage shared

between the Stress Traffic (ST) and Background Traffic

(BT) servers when the servers are of different types. In

scenario C1, IIS achieves 90.7% of the maximum stress

traffic rate and Apache achieves 84.3% of the maximum

background traffic rate, which is a 6.4% difference. When

the servers are switched, IIS achieves 96.8% of the

maximum background traffic rate and Apache achieves

83.5% of the maximum stress traffic rate, which is a

13.3% difference. Similarly in scenario C2, IIS achieves

97.1% of the maximum stress traffic rate and Apache

achieves 86.4% of the maximum background traffic rate;

and in scenario C3, IIS achieves 98.0% of the maximum

background traffic rate and Apache achieves 85.2% of the

maximum stress traffic rate. This shows that IIS can

achieve most of its allowed maximum traffic rate when

sharing the network with an unlike flow (i.e., Cubic TCP),

which can only achieve about 84-86% of its allowed

maximum traffic rate. Even when the shared percentages

between Compound and Cubic TCP are more equitable,

Cubic TCP did not achieve more than 87.4% of its

allowed rate. Thus, Cubic TCP defers to Compound TCP

in a congested network, which limits the performance of

the Apache Web server.

4.3 Competing Servers

In the third set of experiments, we modify the test

network to include two Web servers Server1 (S1) and

Server2 (S2), two clients Client1 and Client2, and two

Stress clients C1 Stress and C2 Stress. In addition to 10

Mbps of UDP traffic from Mgen, 30 Mbps of background

HTTP/TCP traffic are generated by requests from BT

Client (Cbt) to BT Server (BTS), and each server S1 and

S2 has a workload of 30 Mbps of HTTP/TCP stress traffic

due to requests from the clients C1 Stress and C2 Stress

respectively.

As in the earlier experiments, the combined stress traffic

and background traffic total 100 Mbps. The browser on

client Client1 then sends a single request to the Web

server S1, and simultaneously the browser on client

Client2 sends a single request to the Web server S2. Each

request is for a 504 KB file.

Figure 12. Server delay (competing servers): 504 KB

Fig. 12 compares the server delay when 1) both S1

and S2 run Apache, and BTS is IIS; or 2) both S1 and S2

run IIS, and BTS is Apache; or 3) S1 runs IIS and S2 runs

Apache, and BTS is Apache. In 1) and 2), the delays are

comparable. Although the two Apache servers do not

share the bandwidth equally and experience delays that

differ by about 5 seconds (i.e., 35 and 40 second delays),

the IIS servers have equal delays of about 20 seconds. In

3), the performance of Apache degrades to an

unacceptable level (a delay of 50 seconds), whereas IIS

maintains its 20 second delay. It is clear that IIS

(Compound TCP) performs better than Apache (Cubic

TCP) in this case.

Figure 13. Server throughput (competing servers):504 KB

Fig. 13 shows the server throughput for this

experiment. It can be seen that the throughput values for

both servers are comparable in each of the three cases.

Fig. 14 compares the throughput values measured at the

client side. Again, the throughput values are comparable,

although the throughput at the background client is

marginally less than the throughput at each of the two

stress clients.

Table 4 shows the bandwidth percentage shared

between the three flows measured at the client side for the

case of competing servers. It can be seen that each flow

gets an approximately equal percentage of the maximum

allowed bandwidth.

Figure 14. Client throughput (competing servers): 504 KB

Table 4

Client throughput (competing servers): 504 KB

Scenario
C1

Stress

C2

Stress
Cbt

S1, S2 Apache, BTS IIS 87.3 88.1 84.

5

S1, S2 IIS, BTS Apache 86.8 88.1 85.

6

S1 IIS, S2 Apache, BTS

Apache

88 86.9 85.

7

5 Conclusion

We conducted experiments in a test network to study the

impact of two widely implemented TCP congestion

control variants Compound TCP and Cubic TCP on Web

server performance using the popular IIS and Apache

Web servers. Congestion was created by generating a mix

of background traffic and different workloads, and

performance was measured using server delay for a single

browser request, throughput measured at the server and

client ends, and shared bandwidth percentage. The

Apache server with Cubic TCP has less delay than the IIS

server with Compound TCP for large and medium files,

but not for small files. Throughput for IIS is slightly

higher than throughput for Apache regardless of the

congestion scenarios that were used in the experiments.

For experiments with like servers, IIS shares bandwidth

more equitably than Apache and for experiments with

unlike servers, the latter adopts a conservative approach

that limits its performance. When IIS competes with

Apache for bandwidth under congestion, although both

get a roughly equal share of the allowed bandwidth, the

delay for Apache rises to an unacceptably high level.

References

[1] G. Marfia, C. E. Palazzi, G. Pau, M. Gerla, and M.

Roccetti, “TCP Libra: Derivation, Analysis and

Comparison with Other RTT-Fair TCPs”, Computer

Networks, Elsevier, vol. 54, no. 14, October 2010, pp.

2327-2344.

[2] G. Marfia and M. Roccetti, “TCP At Last: Reconsidering

TCP's Role for Wireless Entertainment Centers at Home”,

IEEE Transactions on Consumer Electronics, IEEE

Consumer Electronics Society, vol. 56, no. 4, November

2010, pp. 2233-2240.

[3] M. Allman, V. Paxon, and W. Stevens, “TCP Congestion

Control”, RFC 2581, April 1999.

[4] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A

Compound TCP Approach for High-Speed and long

Distance Networks”, INFOCOM 2006, Barcelona, Spain,

Apr. 2006.

[5] K. Tan, J. Song, M. Sridharan, and C. Ho, “CTCP:

Improving TCP-Friendliness Over Low-Buffered Network

Links”, Microsoft Technical Report.

[6] I. Rhee and L. Xu, “Cubic: A New TCP-Friendly High-

Speed TCP Variant,” ACM SIGOPS Operating System

Review, Volume 42, Issue 5, July 2008, pp. 64-74, 2008.

[7] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock,

“Host-to-Host Congestion Control for TCP”, IEEE

Communications Surveys and Tutorials, vol. 12, no. 3, pp.

304-342, 2010.

[8] H. Jamal and K. Sultan, “Performance Analysis of TCP

Congestion Control Algorithms”, International Journal of

Computers and Communications, Issue 1, Volume 2, 2008.

[9] J. Chicco, D. Collange, and A. Blanc, “Simulation Study of

New TCP Variants”, IEEE symposium on Computers and

Communications, June 2010.

[10] M. Bateman and S. Bhatti, “TCP testing: How well does

ns2 match reality?”, IEEE AINA, April 2010.

[11] Y. Li, D. Leith, and R. Shorten, “Experimental Evaluation

of TCP Protocols for High-Speed Networks”, Technical

Report, Hamilton Institute, 2005.

[12] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu, “A Step toward

Realistic Performance Evaluation of High-Speed TCP

Variants”, PFLDnet, Nara, Japan, 2006.

[13] Mgen, available http://www.cs.itd.nrl.navy.mil/work/mgen

accessed: Feb 13, 2012.

[14] http_load, available at http://www.acme.com

accessed: Feb 13, 2012.

