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ABSTRACT 
TCP congestion control mechanisms are used to prevent 

traffic volume from exceeding network resource limits. 

Consequently, they indirectly impact the performance of 

Web servers in a congested network. Systems running 

under Windows and Linux, including Web servers, use 

respectively the Compound and Cubic TCP congestion 

control variants that are designed for high-speed long-

delay networks. We evaluate the performance under 

congestion of the popular Windows-based IIS and Linux-

based Apache Web servers when serving a single request 

from a browser. Specifically, we conduct experiments in a 

real test network with several routers to compare delay, 

throughput and shared bandwidth percentage when the 

Web server is subjected to various workloads under 

different levels of background network traffic. We find 

that IIS with Compound TCP has performance advantages 

over Apache with Cubic TCP when the two servers 

compete for bandwidth, but Apache has smaller delays 

than IIS for large and medium-sized files. 
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1 Introduction 
 

Most applications today use the transport protocol TCP 

for communication on LANs and on the Internet. TCP 

provides reliable data transmission with flow and 

congestion control. Congestion control algorithms are 

used to estimate the level of congestion in the network by 

using loss-based and delay-based techniques. Congestion 

management is the most complex aspect of TCP; it has 

been extensively researched and continues to be studied 

today. Recent research has focused on managing 

congestion in high-speed long-delay i.e., high bandwidth-

delay product (BDP) networks.  

The most used TCP congestion control variants are 

Compound TCP on Windows and Cubic TCP on Linux. 

Many simulation and real-world studies have confirmed 

that these two algorithms exhibit good performance and 

are especially suited for the high BDP networks they 

target. However, no studies have been done that examine 

the impact of these two algorithms on the performance of 

Web servers with browser requests under different 

workloads, and in the presence of background traffic, by 

conducting experiments using a real network. 

We study the performance of the popular IIS and 

Apache Web servers that respectively implement Cubic 

Compound and Cubic TCP congestion control in a test 

network with several routers. We send HTTP requests to 

the Web servers using a Web browser (Internet Explorer 

or Mozilla Firefox) under varying levels of server load 

and background traffic to create network congestion. The 

server workload and background network traffic consists 

of a mix of HTTP/TCP and UDP traffic generated using 

the freely-available tools http_load and Mgen 

respectively. Performance is measured by determining 

delay, throughput, and shared bandwidth percentage using 

a Wireshark packet analyzer and http_load. We only 

compare performance of the default (preconfigured) 

installations of the two congestion control algorithms (i.e., 

without making any adjustments to preset parameters). 

The main finding is that IIS with Compound TCP 

performs better than Apache with Cubic TCP when the 

two servers compete for bandwidth, but Apache has lower 

delays than IIS for large and medium-sized files. 

The rest of the paper is organized as follows. In 

Section 2, we discuss related work. In Section 3, we 

describe the experimental setup. In Section 4, we present 

and discuss the results, and in Section 5, we give the 

conclusion. 

 

 

2 Related Work 
 

Numerous studies have been conducted on the congestion 

control aspects of TCP. For example in [1], the TCP 

congestion window update algorithm is modified to 

address the issue of RTT-fairness, and it is shown by a 

combination of analysis, simulation and testbed studies 

that protocol stability and efficiency are maintained. In 

[2], simulation studies are used to show that an existing 

TCP variant is suited for use on the local segment of a 

spliced connection to address the needs of wireless 

multimedia flows with home entertainment centers. While 

many variants of its basic “Reno” congestion control 

algorithm [3] have been proposed, relatively few have 

seen large-scale deployment in real-world networks.  



Two notable exceptions are Compound TCP [4, 5] used 

by the Windows operating system and Cubic TCP [6] 

used by the Linux operating system that attempt to 

address the needs of today’s high BDP networks. 

Compound TCP (also known as C-TCP) modifies the 

basic congestion control algorithm by adding a scalable 

term to the congestion control window based on the 

standard “Vegas” estimate of network buffering. In 

contrast, Cubic TCP models the congestion window as a 

cubic function of the time since the last detected loss that 

also depends on the congestion window size prior to that 

loss. While both variants are known to perform well under 

congestion in high BDP networks and have good fairness 

properties, Compound TCP may not treat all flows 

equally and Cubic TCP may have sub-optimal network 

utilization and increase packet loss [7].  

Our study examines performance of the IIS and Apache 

Web servers with their respective Compound and Cubic 

TCP variants under different workloads for a single 

browser request in a network when there are competing 

flows and other background traffic. Most TCP studies of 

its congestion control variants use simulation. For 

example, [8] and [9] study the performance of the two 

variants using a simulation tool. However, [10] suggests 

that simulation studies may not reflect the complexity of 

TCP protocol behavior with traffic in a real network. 

Also, in [11] it is observed that real implementations of 

congestion control algorithms often make changes to parts 

of the TCP stack that are not directly related to the 

congestion algorithm to improve overall performance. We 

consider “out-of-the-box” (i.e., default) implementations 

of TCP in the two most popular Web servers and their 

operating systems running on real hardware. Finally, we 

use background traffic in accordance with the guidelines 

in [12] to study performance of the two TCP variants.  

 

3 Experimental Setup 
 

3.1 Test Network and Traffic Generation 
 

For our experiments, we used a network of clients 

connected to a network of servers via four Linux routers 

R1-R4 and five Ethernet switches S0-S5 as shown in Fig. 

1. Details of the hardware and software used for the 

experiments are given in Table 1. All NICs and switches 

are 1 Gbps except for R1’s NIC on its internal (i.e., client 

network side) interface, and switch S0, that are 100 Mbps 

in order to cause congestion. In the absence of other 

traffic, the RTT between routers R1 and R4 is 

approximately 0.3 ms. 

The Web browser on the client (referred to as “Client” in 

the figure) sent a single request for a 504, 320, or 160 KB 

file (to represent large, medium and small files 

respectively) to the Web server (referred to as “Server” in 

the figure) in the presence of background traffic on the 

network and stress traffic to the Web server “Server” as 

described below. The experiments were done using 

Mozilla Firefox and repeated using Internet Explorer as 

the browser on “Client”. Since the results with both 

browsers were similar, only the results using Firefox are 

reported.  

The congestion scenarios for the experiments (described 

below) were created using the test network in Fig. 1 (or 

minor variations of it) by generating traffic as follows. 

For background traffic, a mix of UDP and HTTP/TCP 

traffic was generated using the Mgen [13] and http_load 

[14] generators respectively: the “Mgen Source” sent 

UDP packets to the “Mgen Sink” at varying rates, and a 

background traffic client (referred to as “BT Client”) sent 

multiple HTTP requests at varying rates via http_load for 

a 320 KB file to a background traffic Web server (referred 

to as “BT Server”). In addition, stress traffic in the form 

of competing requests to the Web server “Server” at 

varying rates for a 320 KB file was generated by a client 

(referred to as “Stress Client”) using http_load. The 

combination of background and stress traffic creates a 

traffic mix for examining the behavior of the two 

congestion control variants. 

 

3.2 Congestion Scenarios 

 

We studied performance of the Apache/Linux and 

IIS/Windows Web servers with their respective TCP 

congestion control approaches (Cubic TCP and 

Compound TCP) by sending browser requests to the 

servers under three congestion scenarios C1, C2, and C3. 

The scenarios create different mixes of background and 

stress traffic on the network totaling 100 Mbps in each 

case as described below. 

C1: Background traffic is 10 Mbps of UDP traffic from 

Mgen Source to Mgen Sink, and 40 Mbps of HTTP/TCP 

traffic generated by requests from BT Client to BT Server 

i.e., the background traffic is 20% UDP and 80% TCP. 

The Web server “Server” additionally has a workload of 

50 Mbps of HTTP/TCP stress traffic due to requests from 

Stress Client. 

C2: Background traffic is 15 Mbps of UDP traffic from 

Mgen Source to Mgen Sink, and 60 Mbps of HTTP/TCP 

traffic generated by requests from BT Client to BT Server 

i.e., the background traffic is 20% UDP and 80% TCP. 

The Web server “Server” additionally has a workload of 

25 Mbps of HTTP/TCP stress traffic due to requests from 

Stress Client. 

C3: Background traffic is 10 Mbps of UDP traffic from 

Mgen Source to Mgen Sink, and 30 Mbps of HTTP/TCP 

traffic generated by requests from BT Client to BT Server 

i.e., the background traffic is 25% UDP and 75% TCP. 

The Web server “Server” additionally has a workload of 

60 Mbps of HTTP/TCP stress traffic due to requests from 

Stress Client. 

The differences between the scenarios can be 

characterized as follows: for UDP background traffic, 

scenarios C3 and C1 have the same levels, while C2 has 5 

Mbps more. For TCP background traffic, C2 has 20 Mbps 

more than C1, which has 10 Mbps more than C3. For TCP 

stress traffic, C3 has 10 Mbps more than C1, which has 25 

Mbps more than C2.  



Comparing TCP stress traffic and the total (TCP and 

UDP) background traffic, C1 has the same levels, while 

C3 has 60% stress and 40% background, and C2 has 75% 

background and 25% stress.  

For all three scenarios, we start Mgen, run http_load on 

Stress Client and BT Client, and send a single request 

from the Web browser on “Client” to the Web server on 

“Server”. The Wireshark packet analyzer is used on the 

server side to measure delay and throughput. Information 

from http_load running on the Stress and BT Clients is 

used to compute throughput on the client side. Measuring 

the throughput on both the client and server side enables 

the impact of congestion control with and without 

network delays to be studied. 

 

4 Experimental Results 
 

In this section, we present the results from experiments to 

test the performance of the Apache and IIS Web servers, 

which run Cubic TCP and Compound TCP respectively. 

We conduct experiments with competing flows, where 

background traffic and stress traffic use the same or 

different server types (IIS or Apache), or where two 

browsers send requests to different server types. Traffic is  

generated based on the three congestion scenarios C1, C2 

and C3 described above, and each experiment consists of 

requesting a large, medium or small file (of size 504, 320 

and 160 KB respectively). All results reported are the 

average of three repeated stable runs of each experiment; 

the results averaged were not significantly different. 

 

 
 

Figure 1. Test Network 

 

 

Table 1                                                                     

Hardware and Software Specification 

Device/Function Details 

Switch S0 Netgear/FSM726S  

Switch S1 Cisco/SG100d-08 

Switch S2 Linksys/EG005W  

Switch S3 Cisco/SG100d-08 

Switch S4 Netgear/GS108T  

Packet Analyzer Dell OPTEPLEX GX520;XP/ 

Wireshark Version 1.2.7 

(SVN Rev 32341)  

Servers Dell OPTEPLEX GX520; 

Windows server 2008 (IIS 7); 

Fedora 12 (Constantine) 

Kernel Linux 2.6.31.5-

127.fc12.i686 

Apache HTTP Server 2.2.16 

Mgen source Dell OPTEPLEX GX260; 

Windows XP Professional 

2002 SP3 

Mgen sink Dell OPTEPLEX GX260; 

CentOS Version 2.16.0 

Clients Dell OPTEPLEX GX520; 

Windows XP Professional 

2002 SP3; 

Linux Fedora 12 Kernel 

2.6.31.5-127.fc12.i686; 

browser: Firefox v3.6.7, 

Internet Explorer 

8.0.6001.18702 

Routers  Dell OPTEPLEX GX520; 

Fedora 12 Kernel Linux 

2.6.31.5-127.fc12.i686 

 

 
4.1 Same Server Type 

 

In the first set of experiments, Server and BT Server are 

the same type i.e., both are Apache or both are IIS. Traffic 

is generated according to the congestion scenarios C1, C2 

and C3. Figs. 2-4 show the delay for a single browser 

request, and Figs. 5-7 show the server throughput using 

large, medium and small files respectively.  

The server delay includes the processing time and the 

delays introduced by the congestion control algorithm. 

The former depends on the total workload (the file size, 

the total number of bytes processed, and the OS/server 

implementation), and the latter depends on the congestion 

level and the characteristics of the algorithm. Observed 

delays may be due to a combination of factors. For 

example, a more aggressive backoff policy to address 

increased congestion is compensated for by smaller delays 

due to the reduction in traffic and packet loss.  

Let t_server(C) denote the total server delay in responding 

to the browser request for a scenario C. Fig. 2 shows that 

for large files, t_IIS(C3) > t_IIS(C1) ≈ t_IIS(C2) ≈ 

t_Apache(C2) > t_Apache(C3) > t_Apache(C1). For IIS, 

when serving a large file, an increase in the workload due 

to stress traffic increases the delay as expected in scenario 

C3 over scenario C1.  



However, comparing scenario C1 with C2, the stress 

traffic is reduced by 50% in scenario C2, and the 

background traffic is increased by 50%, but there is no 

difference in the delay. This appears to suggest that 

Compound TCP has reduced the transmission rate due to 

congestion resulting in a delay that is the same as the 

delay for C1. For Apache, the relative performance for 

scenarios C1 and C3 is the same as for IIS, but the 

congestion due to the increased background traffic in C2 

has resulted in larger delay than in C1. This means that 

Cubic TCP reduces its transmission rate more 

aggressively than IIS when congestion increases, resulting 

in a greater delay to serve a large file. 

 

For medium files, Fig. 3 shows that t_IIS(C3) ≈ t_IIS(C1) 

> t_IIS(C2) > t_Apache(C3) ≈ t_Apache(C1) > 

t_Apache(C2). In this case, the additional stress traffic in 

C3 compared to C1 did not increase the delay because the 

requested file size is smaller and because both congestion 

control variants have reduced the transmission rate in C1 

due to the increased background traffic. In the case of 

scenario C2, the reduced file size and the highest level of 

background traffic result in the least delay because each 

congestion variant has reduced its transmission rate 

sufficiently.  

For small files, Fig. 4 shows that t_IIS(C1) < 

t_Apache(C1) ≈ t_IIS(C3) < t_IIS(C2) < t_Apache(C2) < 

t_Apache(C3). Here, the delays for scenarios C1 are less 

than for C3 as expected since it has less stress traffic, but 

the delay for C2 is larger than for C1 with both servers. 

Since the file size is small, the increased delays for C2 are 

due to reducing the transmission rate because of the 

congestion caused by the additional background traffic. In 

this case, Cubic TCP has a larger delay than Compound 

TCP because it is reducing its transmission rate more 

aggressively.  

In general, the above results indicate that the Apache 

server is more efficient than IIS for large and medium 

files, but less efficient for small files. They also indicate 

that the Apache server has reduced performance 

compared to IIS when congestion increases as in scenario 

C2. This is because Cubic TCP adopts a more 

conservative approach than Compound TCP when losses 

are detected. More studies with a variety of congestion 

scenarios are needed to validate this claim.    

In Figs. 5-7, NRT refers to the server throughput 

when retransmissions are ignored. It is seen that scenario 

C2 has the lowest and scenario C3 has the highest server 

throughput regardless of file size as would be expected. 

However, throughput for IIS is slightly higher than the 

corresponding throughput for Apache in all cases. This 

suggests that Compound TCP (IIS/Windows) may be 

transmitting more aggressively under congestion than 

Cubic TCP (Apache/Linux) since the throughput is higher 

even for large and moderate file sizes (when delays for 

IIS were higher). The throughput in each scenario for all 

file sizes is about the same because the stress traffic level 

in each scenario is the same, and the difference between 

the small, medium and large file sizes used for the single 

request made by the browser does not affect the 

throughput.  

Fig. 8 shows the throughput measured at the Stress and 

BT clients with a request for a 320 KB file. As with server 

throughput, client throughput is also almost identical for 

the three file sizes, so only the results for one file size are 

shown here. While client throughput is less than server 

throughput due to network delay, relative relationships 

between throughput values are not preserved. For 

example in scenario C1, IIS and Apache throughput 

measured at the client is about the same, whereas IIS NRT 

throughput measured at the server side is slightly higher 

than the Apache NRT throughput (Fig. 6). This difference 

could be insignificant or due to a slightly lower packet 

loss with IIS (and hence fewer retransmissions by the IIS 

server). More detailed studies are needed to understand 

the relation between Compound and Cubic TCP, and the 

differences in observed throughput at the client and the 

server. 

 

 
 

Figure 2. Server delay: 504 KB 

 

 

Figure 3.  Server delay: 320 KB 



 

Figure 4. Server delay: 160 KB 

  

Figure 5. Server throughput: 504 KB 

 

 

Figure 6. Server throughput: 504 KB 

 

Figure 7. Server throughput: 160 KB 

 

Figure 8. Client throughput: 320 KB 

Table 2 shows the bandwidth percentage shared between 

the Stress Traffic (ST) and Background Traffic (BT) 

servers. For IIS, each server gets roughly an equal share 

of the bandwidth, whereas for Apache, one of the two 

servers is always getting a larger share. For instance in 

scenario C1, the maximum possible rates are 50 Mbps of 

TCP stress traffic and 40 Mbps of TCP background 

traffic. For IIS, 84.1% of the maximum stress traffic rate 

and 87% of the maximum background traffic rate are 

achieved, which is a 2.9% difference. For Apache, 84.4% 

of the maximum stress traffic rate and 93.9% of the 

maximum background traffic are achieved, which is a 

9.5% difference. This result shows that Compound TCP 

enables better sharing of the available bandwidth with 

another like flow (i.e., Compound TCP) than Cubic TCP. 

 

Table 2                                                                          

Shared bandwidth percentage (same server type) 

Scenario ST IIS BT IIS ST Apache BT Apache 

C1 84.1 87.0 84.4 93.9 

C2 88.5 89.9 95.7 87.0 

C3 83.6 88.3 85.7 95.9 

 

4.2 Different Server Types 

 

In the second set of experiments, a file of the same size 

(504 KB) is requested by the browser under all three 

congestion scenarios. For these experiments, Server and 

BT Server are of different types (i.e., Server is IIS and BT 

Server is Apache, or Server is Apache and BT Server is 

IIS). 

 



  

Figure 9. Delay (different servers): 504 KB 

 

  

Figure 10. Server throughput (different servers): 504 KB 

In Fig. 9, it is seen that for scenario C2 (in which 

background traffic is at its highest level), the delay for 

Apache when serving a single browser request is 3 times 

that for IIS when the stress and background servers are of 

different types. In contrast, for scenarios C1 and C3, the 

IIS delay is only slightly larger than the Apache delay. 

Comparing with the case when the servers were of the 

same type (Fig. 2), the IIS delays for C1 and C3 are larger 

than for Apache, but the difference between IIS and 

Apache for C2 is insignificant. It therefore appears that 

the reduction in the transmission rate under congestion is 

larger for Cubic TCP (Apache) than it is for Compound 

TCP (IIS).    

 

 
 

Figure 11. Client throughput (different servers): 504 KB 

In Figs. 10 and 11, server and client NRT throughput with 

different server types is similar to the result with servers 

of the same type (Figs. 5 and 8). The IIS server now has 

slightly larger throughput than Apache for all scenarios. 

 

Table 3                                                                          

Shared bandwidth percentage (different servers) 

Scenario 

 

ST IIS 

 

BT Apache ST Apache BT IIS 

C1 90.7 84.3 83.5 96.8 

C2 97.1 86.4 87.4 90.0 

C3 85.7 85.8 85.2 98.0 

 

Table 3 shows the bandwidth percentage shared 

between the Stress Traffic (ST) and Background Traffic 

(BT) servers when the servers are of different types. In 

scenario C1, IIS achieves 90.7% of the maximum stress 

traffic rate and Apache achieves 84.3% of the maximum 

background traffic rate, which is a 6.4% difference. When 

the servers are switched, IIS achieves 96.8% of the 

maximum background traffic rate and Apache achieves 

83.5% of the maximum stress traffic rate, which is a 

13.3% difference. Similarly in scenario C2, IIS achieves 

97.1% of the maximum stress traffic rate and Apache 

achieves 86.4% of the maximum background traffic rate; 

and in scenario C3, IIS achieves 98.0% of the maximum 

background traffic rate and Apache achieves 85.2% of the 

maximum stress traffic rate. This shows that IIS can 

achieve most of its allowed maximum traffic rate when 

sharing the network with an unlike flow (i.e., Cubic TCP), 

which can only achieve about 84-86% of its allowed 

maximum traffic rate. Even when the shared percentages 

between Compound and Cubic TCP are more equitable, 

Cubic TCP did not achieve more than 87.4% of its 

allowed rate. Thus, Cubic TCP defers to Compound TCP 

in a congested network, which limits the performance of 

the Apache Web server. 

4.3  Competing Servers 

 

In the third set of experiments, we modify the test 

network to include two Web servers Server1 (S1) and 

Server2 (S2), two clients Client1 and Client2, and two 

Stress clients C1 Stress and C2 Stress. In addition to 10 

Mbps of UDP traffic from Mgen, 30 Mbps of background 

HTTP/TCP traffic are generated by requests from BT 

Client (Cbt) to BT Server (BTS), and each server S1 and 

S2 has a workload of 30 Mbps of HTTP/TCP stress traffic 

due to requests from the clients C1 Stress and C2 Stress 

respectively.  



As in the earlier experiments, the combined stress traffic 

and background traffic total 100 Mbps. The browser on 

client Client1 then sends a single request to the Web 

server S1, and simultaneously the browser on client 

Client2 sends a single request to the Web server S2. Each 

request is for a 504 KB file.   

 

 
 

Figure 12. Server delay (competing servers): 504 KB 

Fig. 12 compares the server delay when 1) both S1 

and S2 run Apache, and BTS is IIS; or 2) both S1 and S2 

run IIS, and BTS is Apache; or 3) S1 runs IIS and S2 runs 

Apache, and BTS is Apache. In 1) and 2), the delays are 

comparable. Although the two Apache servers do not 

share the bandwidth equally and experience delays that 

differ by about 5 seconds (i.e., 35 and 40 second delays), 

the IIS servers have equal delays of about 20 seconds. In 

3), the performance of Apache degrades to an 

unacceptable level (a delay of 50 seconds), whereas IIS 

maintains its 20 second delay. It is clear that IIS 

(Compound TCP) performs better than Apache (Cubic 

TCP) in this case.  

 

 
Figure 13. Server throughput (competing servers):504 KB 

Fig. 13 shows the server throughput for this 

experiment. It can be seen that the throughput values for 

both servers are comparable in each of the three cases. 

Fig. 14 compares the throughput values measured at the 

client side. Again, the throughput values are comparable, 

although the throughput at the background client is 

marginally less than the throughput at each of the two 

stress clients.  

Table 4 shows the bandwidth percentage shared 

between the three flows measured at the client side for the 

case of competing servers. It can be seen that each flow 

gets an approximately equal percentage of the maximum 

allowed bandwidth. 

 

 
 

Figure 14. Client throughput (competing servers): 504 KB 

 

Table 4                                                                                  

Client throughput (competing servers): 504 KB 

Scenario 
C1 

Stress 

C2 

Stress 
Cbt 

S1, S2 Apache, BTS IIS 87.3 88.1 84.

5 

S1, S2 IIS, BTS Apache 86.8 88.1 85.

6 

S1 IIS, S2 Apache, BTS 

Apache 

88 86.9 85.

7 

 

5 Conclusion 
 

We conducted experiments in a test network to study the 

impact of two widely implemented TCP congestion 

control variants Compound TCP and Cubic TCP on Web 

server performance using the popular IIS and Apache 

Web servers. Congestion was created by generating a mix 

of background traffic and different workloads, and 

performance was measured using server delay for a single 

browser request, throughput measured at the server and 

client ends, and shared bandwidth percentage. The 

Apache server with Cubic TCP has less delay than the IIS 

server with Compound TCP for large and medium files, 

but not for small files. Throughput for IIS is slightly 

higher than throughput for Apache regardless of the 

congestion scenarios that were used in the experiments. 

For experiments with like servers, IIS shares bandwidth 

more equitably than Apache and for experiments with 

unlike servers, the latter adopts a conservative approach 

that limits its performance. When IIS competes with 

Apache for bandwidth under congestion, although both 

get a roughly equal share of the allowed bandwidth, the 

delay for Apache rises to an unacceptably high level.   
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