Исследование поверхностных структур плёнок алюминия

Автор

Трусов Герман Валентинович Москва, лицей №1586

Москва, 2008

Цель, объект и задачи исследования

Цель исследования - получение теоретических и практических сведений о структуре рельефа алюминия различной толщины напылённого на стеклянную подложку

Объектом исследования является алюминий напылённый на стеклянную подложку

Решаемые задачи:

- разработка и исследование конструкции алюминиевого покрытия
- исследование отдельных слоёв алюминия
- исследование установки и метода производства покрытий
- исследование и освоение методов измерения полученных результатов

Актуальность

Алюминий широко применяется в различных областях жизнедеятельности человека как конструкционный материал, направлен на улучшение свойств различных сплавов. Используется в качестве горючего компонента в твёрдых ракетных топливах, как компонент термита и также в трёхслойной наноструктуре фильтров Фабри-Перо.

Алюминий является важным компонентом многих сплавов. Например, в алюминиевых бронзах основные компоненты — медь и алюминий. В магниевых сплавах в качестве добавки чаще всего используется алюминий. Потребление этих сплавов имеет колоссальный объем, поэтому возможность проведения нового вида испытаний данных веществ позволит провести глобальную модификацию веществ.

Улучшение свойств веществ приведет к более широкому распространению, а также к более удобному применению данного материала.

Сведения об Алюминии

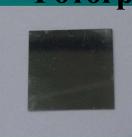
Алюминий (лат. Aluminium) — химический символ AI, III группа периодической системы Менделеева, атомный номер 13, атомная масса 26,9815386(8) г/моль, мягкий, лёгкий, серебристо-белый металл, быстро окисляющийся, удельная плотность 2,7 г/ см³, температура плавления 660 С, температура кипения 2500 С. По распространённости в земной коре алюминий занимает 3-е место после кислорода и кремния среди всех атомов и 1-е место — среди металлов. Легко поддается обработке: прокатывается в фольгу, вытягивается в тонкий провод, отливается. Алюминий легко соединяется с кислородом уже при обычной температуре. При этом его поверхность укрывается пленкой Al₂O₃, которая защищает металл от дальнейшего окисления. Толщина оксидной пленки составляет 0,00001 мм=10нм. Она крепкая, твердая, гибкая, не отстает при растягивании, сжатии, закручивании и сгибании, проводит ток, плавится при температуре 2050 С. Оксидная пленка имеет на поверхности матовый вид. Благодаря этой пленке алюминий не разрушается (не корондирует) от влаги и воздуха. Алюминий образует сплавы почти со всеми металлами.

Применение

Основные достоинства алюминия в этом качестве — лёгкость, коррозионная стойкость, высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки.

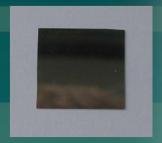
Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий).

Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 2 раза дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Правда, у алюминия как электротехнического материала есть неприятное свойство — из-за прочной оксидной плёнки его тяжело паять.


Описание эксперимента

Объект исследования представлен в виде тонкоплёночных покрытий, напылённых установкой магнетронного напыления в вакууме Leybold LH Z550 Sputtering Plant.

Фотографии образцов


Плёнка алюминия 10 нм

Плёнка алюминия 20 нм

Плёнка алюминия 50 нм

Плёнка алюминия 120 нм

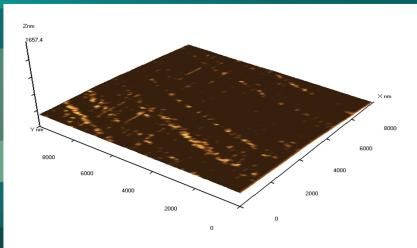
Порядок выполнения операций

При помощи магнетронного ПТ напыления на подложку из кварцевого стекла наносят слой алюминия толщиной 4-8 нм, на который наносят тем же способом слой оксида кремния толщиной 300нм, после чего наносят ещё один слой алюминия толщиной 4-8 нм.

Схема магнетронного напыления в вакууме

Проведение исследования с помощью C3M NanoEducator

Исследование проводилось с помощью сканирующего зондового микроскопа NanoEducator. Выбран метод полуконтактной атомно – силовой микроскопии. Площадь сканирования всех образцов – 10—10 микрометров. Перед началом исследования производиться подготовка прибора к работе, калибровка сканера с помощью специальной калибровочной решетки TGZ3.



Устройство прибора:

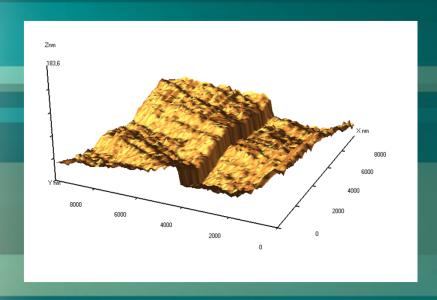
- 1. основание
- 2. держатель образца
- 3. датчик взаимодействия
- 4. винт фиксации датчика
- 5. винт ручного подвода
- 6. винты перемещения сканера с образцом
- 7. защитная крышка с видеокамерой

Исследования подложки


При анализе поверхности подложки на наноуровне установлено, что ее структурные образования расположены равномерно по всей поверхности подложки и имеют размеры значительно меньше нанотехнологической границы 100 нанометров во всех направлениях, т.е. Относятся к наноструктурным образованиям.

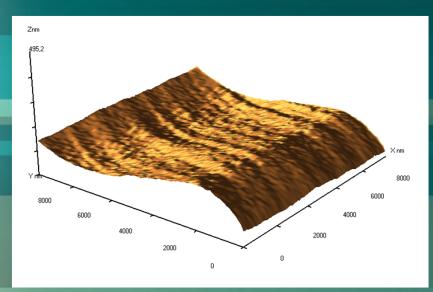
Подложка 3х3х0.7 мкм

Было сделано предположение, что эти поверхностные структурные образования вызваны молекулярным строением вещества подложки, структура которого является неоднородной, что доказывает некристаллическое, ааморфное состояние вещества.


Исследования пленки толщиной10нм

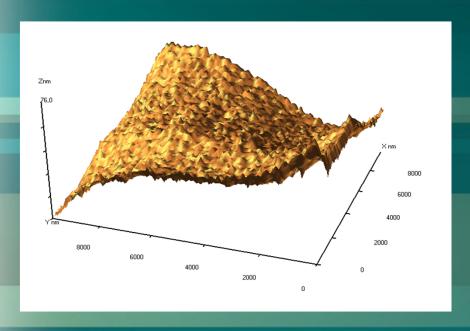
Al-10 10x10x0.3 мкм

По сканам видно, что пленка равномерным слоем распределена по поверхности подложки, какие-либо структурные образования отсутствуют.


Исследования пленки толщиной 20нм

AL-20 10x10x0.2 мкм

Толщина пленки резко различна. На поверхности имеются структуры, различные по размерам.


Исследования пленки толщиной 50нм

 $AL-50\ 10x10x0.5$ мкм

Пленка, образованная алюминием, представляет собой равномерно распределенный по подложке слой, на поверхности пленки нет каких-либо структур. Вероятно, это можно объяснить тем, что вещество алюминий является простым,

Исследования пленки толщиной 120нм

AL-120 10x10x0.1 мкм

По сканам видно, что пленка равномерным слоем распределена по поверхности подложки, какие-либо структурные образования отсутствуют.

Выводы

В работе рассмотрена топология и конструкция покрытий из электропроводящих полимеров для создания покрытий с электронным управлением и их оптическими свойствами.

Метод напыления в вакууме позволит создать общую структурную модель полимерного покрытия, с помощью которой можно будет направленно создавать покрытия с заданным комплексом свойств, а также новые методы нанесения алюминия на различные поверхности, что сделает удобным его применение.

Кроме этого возможность анализа данных поверхностей может позволить из-за изменения физико-химических свойств создать вещества, способные быть более прочными.

Создание материалов и покрытий с заданным комплексом свойств приведет к более широкому распространению, а также использованию их в различных сферах жизнедеятельности человека.