

Комплекс для измерений SMD-компонентов

Комплекс серии CTS предназначен для измерений коэффициентов передачи и отражения (S-параметров) и импеданса пассивных компонентов для поверхностного монтажа (SMD-компонентов) в оснастке.

Ключевые особенности

- Измерение параметров SMD-компонентов на векторном анализаторе цепей в диапазоне частот до 20 ГГц
- ≻ Определение модуля и фазы S-параметров
- ≻ Определение модуля и фазы импеданса
- 🕨 Два типа оснастки Serial и Shunt
- Ресурс оснастки более 1000 подключений
- Установка компонентов в оснастку стандартным вакуумным пинцетом со специальной диэлектрической насадкой
- Управление программным обеспечением CTS TOOL
 - автоматизация измерений
 - исключение влияния оснастки
 - вычисление погрешности измерений
 - анализ данных
 - протоколирование, инструкции

Применение

- ≻ Валидация компонентной базы
 - входной контроль
 - приемка
 - характеризация (описание)
- ≻ Производство компонентной базы
- Производство радиотехнических устройств

Комплекс для измерений SMD-компонентов

Описание

SMD-компоненты: резисторы, конденсаторы или катушки индуктивности, помимо номинального значения сопротивления, емкости или индуктивности соответственно, имеют набор паразитных параметров, характеризующий их поведение с ростом частоты. При монтаже компонентов на печатную плату (см. описание оснастки) к этим собственным частотно-зависимым параметрам добавляются «внешние» характеристики, присущие контактным площадкам самой печатной платы. В связи с этим возникает необходимость определения параметров компонентов, непосредственно установленных на плату, т.е. в условиях близких к реальному применению. Полученные данные могут быть использованы для валидации компонентной базы, ее производства или составления библиотеки, необходимой для проектирования СВЧ устройств. Измерение компонентов осуществляется с помощью векторных анализаторов цепей.

Рисунок 2 – Области применения

В состав комплекса входят отечественный векторный анализатор цепей серии КОБАЛЬТ, внесенный в Государственный реестр средств измерений, комплект для измерений SMDкомпонентов, включающий управляющее программное обеспечение CTS TOOL, и поставляемые опционально – набор калибровочных мер, кабели СВЧ совместно с коаксиальными переходами, вакуумный насос с пинцетом, микроскоп и компьютер.

Комплекс для измерений SMD-компонентов

Таблица 1 – Перечень поддерживаемых анализаторов цепей

Анализатор Диапазон рабочих частот анализатор		
Двухпортовые приборы		
C1220	от 100 кГц до 20 ГГц	
C2220 (DRA)	от 100 кГц до 20 ГГц	
C4220 (FE)	от 100 кГц до 20 ГГц	
DRA – прямой доступ к приемникам, FE – расширение частотного диапазона.		

Управляющее программное обеспечение векторных анализаторов цепей доступно для скачивания на сайте ПЛАНАР: http://www.planarchel.ru

Комплект для измерений SMD-компонентов состоит из:

- Оснастки Serial (2 шт.)
- Оснастки Shunt (2 шт.)
- Диэлектрических насадок для вакуумного пинцета
- Пары пинцетов для перемещения компонентов
- Платформы для удобства работы в ручном режиме измерений
- Набора компонентов с измеренными параметрами для оперативной проверки комплекса и оценки износа оснастки
- Дополнительной пластиковой коробочки (тары), которую можно использовать для хранения, перемещения или сортировки компонентов
- Программного обеспечения CTS TOOL

Подключение компонентов к анализатору цепей осуществляется с помощью оснастки. Внешний вид оснастки приведен на рисунке 3. Каждая оснастка состоит из печатной платы, расположенной на металлическом основании, и двух коаксиально-микрополосковых переходов. Контактные площадки для установки компонентов отмечены маской на печатной плате. Номинальное значение характеристического импеданса подводящих линий передачи 50 Ом. Для установки компонентов в оснастку следует использовать стандартный вакуумный пинцет с диэлектрическими насадками. В комплекте для измерений SMD-компонентов предусмотрены насадки с несколькими геометрическими размерами для захвата компонентов разных типов.

Комплекс для измерений SMD-компонентов

Рисунок 3 – Основные элементы оснастки

Чтобы обеспечить отсчет параметров в месте подключения компонента, выполняется автоматическое исключение подводящих линий, т.е. осуществляется перенос плоскости калибровки к контактным площадкам компонента. Алгоритм исключения реализован в программном обеспечении CTS TOOL. Для эффективной работы данного алгоритма предъявляются довольно жесткие требования к точности изготовления топологии печатной платы. Каждая плата, которая устанавливается в оснастку, проходит проверку геометрических размеров и электрических характеристик, чтобы гарантировать значение характеристического импеданса ее линий передачи, близким к 50 Ом.

Для исключения влияния линий используется алгоритм совместного оценивания, который позволяет выделить сигналы, отраженные от входа и выхода коаксиально-микрополосковых переходов, а также оценить комплексный коэффициент передачи подводящих линий.

Рисунок 4 – Перенос плоскости калибровки

Комплекс для измерений SMD-компонентов

В зависимости от импеданса компонента и точности измерений доступны три схемы подключения, реализованные с помощью двух оснасток – Serial и Shunt. Оснастка также может использоваться для измерений параметров именно в той схеме, в которой предполагается применение компонента.

Таблица 2

Рекомендуемая схема измерений	Компонент
Deflect	импеданс, близкий к 50 Ом:
Reflect	резисторы
Sorial	импеданс среднего и высокого уровня:
Sellat	катушки индуктивности, резисторы
Shupt	импеданс низкого уровня:
Shuht	конденсаторы, резисторы
Диапазоны и погрешности измерений характеристик	импеданса приведены в разделе технических

Рисунок 5 – Схемы подключения

Комплекс для измерений SMD-компонентов

Рисунок 6 – Схема подключения Shunt. Фото под микроскопом

Рисунок 7 – Схема подключения Serial. Фото под микроскопом

Для удобства проведения измерений и получения более стабильных результатов рекомендуется использовать платформу. Платформа позволяет зафиксировать оснастку на рабочем месте и уменьшить влияние кабелей СВЧ, с помощью которых она подключается к анализатору. Дополнительно платформа имеет лотки для размещения измеряемых компонентов и их сортировки, штыри — для хранения используемых диэлектрических насадок, стаканы для размещения пинцетов.

Рисунок 8 – Платформа

Комплекс для измерений SMD-компонентов

Комплект поставки

- Векторный анализатор цепей серии КОБАЛЬТ, обеспечивающий высокую стабильность измерений S-параметров;
- Комплект для измерений SMD-компонентов, включающий оснастки Serial и Shunt, диэлектрические насадки для вакуумного пинцета, обычные пинцеты для перемещения компонентов, платформу для удобства работы в ручном режиме, набор компонентов с измеренными параметрами для оперативной проверки комплекса и оценки износа оснастки, а также дополнительную пластиковую коробочку (тару), которую можно использовать для хранения, перемещения или сортировки компонентов;
- Программное обеспечение CTS TOOL для управления процессом измерений, обработки и анализа полученных данных;
- 🕨 Эксплуатационная документация;
- 🕗 Комплект калибровочных мер или автоматический калибровочный модуль (опция);
- Фазостабильные измерительные кабели (кабели СВЧ) и коаксиальные переходы (опция);
- Вакуумный насос с пинцетом (опция);
- 🕨 Микроскоп (опция);
- Персональный компьютер или ноутбук (опция).

По согласованию состав комплекса может быть изменен. Возможен выезд специалистов для обучения персонала на территории заказчика.

Комплекс для измерений SMD-компонентов

Технические характеристики

Таблица З

Наименование характеристики	Значение		
Измеряемые SMD-компоненты	Резисторы		
	Конденсаторы		
	Катушки индуктивности		
Типоразмер SMD-компонентов	Таблица 4		
Схемы подключения	Reflect, Serial		
	Shunt		
Диапазон рабочих частот, МГц	от 0,1 до 20000		
Диапазон измерений модуля коэффициента отражения	от 0 до 1		
Диапазон измерений модуля коэффициента передачи, дБ	от –80 до 0		
Параметры печатной платы:			
номинальный импеданс линии передачи, Ом	50		
материал диэлектрического основания	R04350B		
Рабочие условия эксплуатации:			
температура окружающего воздуха,°С от +18 до +28			
Примечание – типоразмер определяется при заказе.			

Таблица 4 – Исполнение комплекта для измерений SMD-компонентов

Исполнение	Типоразмер измеряемых SMD-компонентов
CTS-0201	0201
CTS-0402	0402
CTS-0603	0603
CTS-0805	0805

Комплекс для измерений SMD-компонентов

Типоразмер SMD-компонента обозначается в виде четырёх (реже пяти) цифр. Для кодирования используются длина и ширина компонента в дюймах (EIA) или миллиметрах.

Dian	<i>"</i> 1 0 1	Duration	-			~ ~
РИС\	/нок э –	внешнии	вил	DIMID-RO	мпонент	UВ
				•···•		

Таблица 5 – Геометрические размеры SMD-компонентов

Типоразмер EIA	Типоразмер метрический	L	W	н	D
0201	0603	0,6 мм (0,02″)	0,3 мм (0,01″)	0,23 мм (0,009″)	0,13 мм (0,005″)
0402	1005	1 мм (0,04″)	0,5 мм (0,02″)	0,35 мм (0,014″)	0,25 мм (0,009″)
0603	1608	1,6 мм (0,06″)	0,8 мм (0,03″)	0,45 мм (0,018″)	0,3 мм (0,01″)
0805	2012	2 мм (0,08″)	1,2 мм (0,05″)	0,4 мм (0,016″)	0,4 мм (0,016″)

Примечание – Точные размеры и допуска указаны в технической документации производителя конкретного компонента.

Комплекс для измерений SMD-компонентов

Рисунок 10 – Пределы допускаемой относительной погрешности измерений модуля импеданса в диапазоне частот до 10 ГГц (для CTS-0402)

Рисунок 11 – Пределы допускаемой относительной погрешности измерений модуля импеданса в диапазоне частот свыше 10 до 20 ГГц (для CTS-0402)

Комплекс для измерений SMD-компонентов

Таблица 6

Схема	Формулы расчета импеданса	Формулы расчета погрешности измерений модуля импеданса
Reflect	$Z_0 \cdot \frac{1 + S_{11}}{1 - S_{11}}$	$ \Delta S_{11}^{max} \cdot \frac{2 \cdot Z_0}{ 1 - S_{11} ^2} + \Delta Z_0 \frac{ 1 + S_{11} }{ 1 - S_{11} }$
Shunt	$\frac{Z_0}{2} \cdot \frac{S_{21}}{1 - S_{21}}$	$ \Delta S_{21}^{max} \cdot \frac{Z_0}{2 \cdot 1 - S_{21} ^2} + \Delta Z_0 \frac{ S_{21} }{2 \cdot 1 - S_{21} }$
Serial	$2 \cdot Z_0 \cdot \frac{1 - S_{21}}{S_{21}}$	$ \Delta S_{21}^{max} \cdot \frac{2 \cdot Z_0}{ S_{21} ^2} + \Delta Z_0 \frac{2 \cdot 1 - S_{21} }{ S_{21} }$

 $|\Delta S_{11}^{max}|$ и $|\Delta S_{21}^{max}|$ – суммарные погрешности измерений коэффициента отражения и коэффициента передачи компонента в оснастке, как функции систематической и случайной погрешностей измерений прибора и алгоритма исключения подводящих линий;

Z₀ – номинальное значение характеристического импеданса подводящих линий 50 Ом;

 $|\Delta Z_0|$ – погрешность определения характеристического импеданса подводящих линий, Ом;

S_{ij} – результаты измерений S-параметров компонентов.

Комплекс для измерений SMD-компонентов

Порядок работы

Установка ПО и подключение к анализатору

- ▶ подключить анализатор к компьютеру с помощью кабеля USB;
- установить драйвер и управляющее программное обеспечение S2VNA, если они не были ранее установлены, зарегистрировать СОМ-сервер;
- запустить управляющее программное обеспечение. Проверить, чтобы через несколько секунд в строке состояния индицировалась надпись «Готов»;
- установить программное обеспечение CTS TOOL, если оно не было ранее установлено. При установке необходимо следовать указаниям мастера.

≻ Подготовка к работе

- запустить CTS TOOL, программа должна автоматически определить прибор, подключенный к компьютеру; при необходимости, нажать кнопку «Refresh»;
- ▶ выбрать из списка «Connected Devices» прибор и нажать кнопку «Start»;
- при необходимости, на странице «VNA Settings» ввести параметры векторного анализатора цепей, для применения параметров следует перезапустить CTS TOOL и продолжить работу;
- ▶ на странице «Main Table»:
 - ввести данные протокола и персональные данные оператора;
 - выбрать тип измеряемого компонента;
 - добавить необходимое количество компонентов.

≻ Проведение измерений

- ▶ собрать схему измерений согласно инструкции CTS TOOL;
- перейти на страницу «VNA Calibration» и выполнить калибровку анализатора в коаксиальном тракте;
- подключить оснастку согласно требуемой схеме измерений;
- ь выбрать страницу Reflect, Shunt или Serial, соответствующую выбранной схеме;
- следуя инструкциям программного обеспечения, выполнить измерение параметров оснастки без компонента; по окончании измерений CTS TOOL проведет исключение ее подводящих линий для определения параметров компонентов в плоскости их подключения.

Комплекс для измерений SMD-компонентов

- установить компонент в оснастку, используя вакуумный пинцет с диэлектрической насадкой; чтобы убедиться в надежности подключения компонента, рекомендуется проверить повторяемость трасс коэффициента отражения и передачи в управляющем программном обеспечении;
- выполнить измерение модуля и фазы S-параметров и импеданса, нажав кнопку «Measurement»;
- повторить процедуру для всех компонентов;
- ▶ для отображения пределов погрешности измерений необходимо в выпадающем списке «*Errors*» выбрать значение «*ON*»;
- сохранить или распечатать полученные результаты измерений.

▶ Возможности программного обеспечения:

- сохранение в формате PDF и печать результатов измерений каждого компонента;
- сравнение S-параметров компонентов, измеренных в одной схеме;
- сравнение импеданса компонентов для всех схем;
- сохранение в формате PDF и печать результатов сравнения;
- ▶ сохранение в формате *PDF* и печать протокола измерений.

Комплекс для измерений SMD-компонентов

Основные этапы измерений

Подключить к векторному анализатору цепей кабели СВЧ совместно с переходами, обеспечивающими соединение с оснасткой. Установить требуемые параметры анализатора и выполнить полную двухпортовую калибровку с использованием комплекта калибровочных мер или автоматического калибровочного модуля.

Рисунок 12 – Калибровка анализатора в коаксиальном тракте

Комплекс для измерений SMD-компонентов

После калибровки необходимо подключить оснастку Shunt или Serial, как показано на рисунке 13, и выполнить измерение ее S-параметров без установленного компонента. Программа CTS TOOL автоматически проведет исключение подводящих линий оснастки для измерений параметров компонентов в плоскости их подключения.

Рисунок 13 – Измерение параметров оснастки без компонента и автоисключение подводящих линий

Комплекс для измерений SMD-компонентов

После исключения влияния оснастки необходимо установить компонент, используя вакуумный пинцет с диэлектрической насадкой. Место установки отмечено маской. Чтобы убедиться в надежности подключения компонента, рекомендуется проверить повторяемость трасс коэффициента отражения и передачи в управляющем программном обеспечении.

Рисунок 14 – Измерение параметров компонента в оснастке

Комплекс для измерений SMD-компонентов

Программное обеспечение CTS TOOL

Измерение параметров компонентов выполняется с помощью программного обеспечения CTS TOOL.

CTS TOOL содержит все необходимые инструкции и схемы измерений. Программа автоматически устанавливает заданные параметры анализатора, такие как частотный диапазон, количество точек по частоте, уровень выходной мощности и полосу пропускания фильтра промежуточной частоты. В процессе измерений CTS TOOL автоматически вычисляет параметры оснастки и проводит коррекцию результатов измерений для отсчета комплексных параметров компонентов в месте их подключения.

В программном обеспечении CTS TOOL реализован алгоритм расчета и отображения погрешности измерений S-параметров и импеданса.

CTS TOOL отображает результаты измерений в виде графиков. Все графики поддерживают возможность масштабирования. Для их анализа удобно использовать реализованные в программе маркеры. Полученные результаты могут быть сохранены в файл и (или) напечатаны в форме протокола.

Комплекс для измерений SMD-компонентов

Рисунок 16 – Результаты измерений по схеме Shunt импеданса SMD-конденсатора с номинальным значением емкости 10 пФ в диапазоне частот до 20 ГГц

Рисунок 17 – Результаты измерений по схеме Shunt импеданса SMD-конденсатора с номинальным значением емкости 10 пФ.

Для анализа используется функция масштабирования графика

Комплекс для измерений SMD-компонентов

Рисунок 18 – Результаты измерений по схеме Shunt коэффициента передачи SMD-конденсатора с номинальным значением емкости 10 пФ в диапазоне частот до 20 ГГц

Рисунок 19 – Результаты измерений по схеме Serial импеданса SMD-катушки индуктивности с номинальным значением индуктивности 10 нГн с отображением пределов погрешности. Для анализа используется функция масштабирования графика

19

Комплекс для измерений SMD-компонентов

Эквивалентная схема

Рисунок 20 – Эквивалентная схема *SMD*-резистора (схема *Reflect*); *R*, *C*, *L* – собственные параметры резистора; *Le*, *Ce* – параметры контактных площадок

Рисунок 21 – Сравнения экспериментальных данных и результатов моделирования для *SMD*-резистора с номинальным значением сопротивления 47 Ом

Комплекс для измерений SMD-компонентов

Пример протокола

Рисунок 22 – Протокол измерений в формате pdf

Пробная эксплуатация

Для оценки работоспособности комплекса на Вашем рабочем месте, мы предусмотрели возможность пробной эксплуатации в течение одного месяца.

Контактная информация

тел: +7 (916) 623-13-18

эл. почта: <u>aleksandr.shushkov@planarchel.ru</u>