

Комплекс для измерений SMD-компонентов

Комплекс COBALT CTS 0402 предназначен для измерений S-параметров и импеданса пассивных SMD-компонентов типоразмера 0402 (EIA) на печатной плате в диапазоне частот от 100 к Γ ц до 20 Γ Γ ц.

Ключевые особенности

- Измерение SMD-компонентов типоразмера
 0402 (EIA) на печатной плате
 - определение модуля и фазы S-параметров
 - определение модуля и фазы импеданса
- Диапазон рабочих частот от 100 кГц
 до 20 ГГц
- 녿 Измерение в схемах Reflect, Shunt, Serial
- Управление программным обеспечением CTS TOOL
 - автоматизация измерений
 - исключение влияния печатной платы (оснастки)
 - вычисление погрешности измерений
 - анализ данных
 - протоколирование
 - встроенные инструкции

Применение

- Валидация компонентной базы
 - входной контроль
 - приемка
 - характеризация (описание)
- Производство компонентной базы
 - моделирование
 - построение эквивалентных схем
 - контроль технологических процессов
- Производство радиотехнических устройств

Краткое описание

Комплекс для измерений SMD-компонентов, таких как резисторы, конденсаторы и катушки индуктивности, построен на базе отечественного векторного анализатора цепей серии КОБАЛЬТ и оснастки в виде набора прецизионно изготовленных печатных плат с установленными коаксиально-микрополосковыми переходами. Для управления, обработки и анализа полученных данных используется программное обеспечение СТЅ ТООС.

Подключение компонента к анализатору цепей осуществляется с помощью печатной платы с характеристическим импедансом 50 Ом. Для установки и удержания компонента используется вакуумный пинцет с диэлектрической насадкой.

Чтобы обеспечить отсчет параметров в месте подключения компонента. выполняется автоматическое исключение подводящих линий используемой платы, т.е. осуществляется перенос плоскости калибровки к контактным площадкам компонента. Алгоритм исключения реализован в программном обеспечении CTS TOOL. В зависимости от импеданса компонента и точности измерений следует использовать одну из трех схем включения, реализованных на двух печатных платах. Также платы могут быть использованы для измерений параметров именно в той схеме включения, в которой предполагается применение компонента.

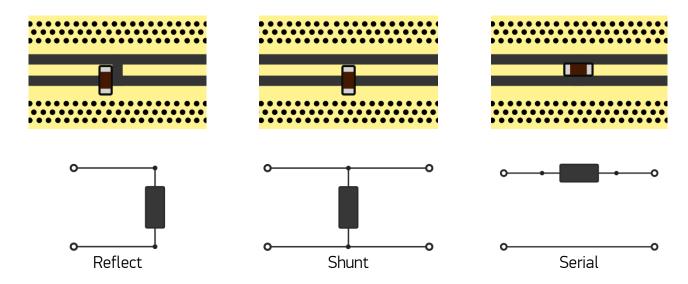


Рисунок 1 – Схемы измерения компонентов.

Комплекс для измерений SMD-компонентов

Рекомендации по применению схем подключения компонента для измерения на печатной плате

Таблица 1

Рекомендуемая схема измерений	Компонент
Reflect	импеданс, близкий к 50 Ом: резисторы
Shunt	импеданс низкого уровня: конденсаторы, резисторы
Serial	импеданс среднего и высокого уровня: катушки индуктивности, резисторы
Диапазоны и погрешности измерений характеристик	импеданса приведены в разделе технических

Комплекс для измерений SMD-компонентов

Технические характеристики

Технические характеристики приведены в таблице 2, пределы допускаемой относительной погрешности измерений модуля импеданса представлены на рисунках 2-3.

Таблица 2

Наименование характеристики	Значение
Типы измеряемых пассивных SMD-компонентов	Резисторы
	Конденсаторы
	Катушки индуктивности
Типоразмер	0402 (<i>EIA</i>)
Схемы подключения	Reflect
	Shunt
	Serial
Диапазон рабочих частот, МГц	от 0,1 до 20000
Диапазон измерений модуля коэффициента отражения	от 0 до 1
Диапазон измерений модуля коэффициента передачи, дБ	от –80 до 0
Параметры печатной платы:	
импеданс линии передачи, Ом	50 ± 1
материал диэлектрического основания	Rogers 4351B
Рабочие условия эксплуатации:	
температура окружающего воздуха,°С	от +18 до +28
относительная влажность воздуха при температуре +25°C, %, не более	90
атмосферное давление, кПа (мм рт. ст.)	от 70,0 до 106,7
	(от 537 до 800)

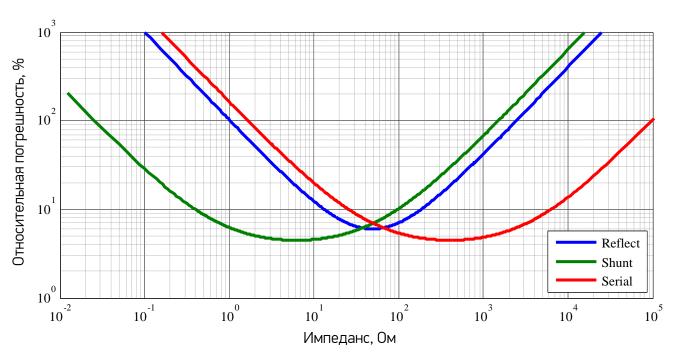


Рисунок 2 – Пределы допускаемой относительной погрешности измерений модуля импеданса в диапазоне частот до 10 ГГц.

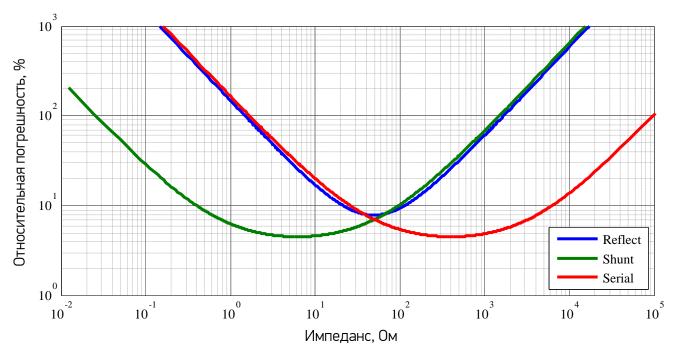


Рисунок 3 – Пределы допускаемой относительной погрешности измерений модуля импеданса в диапазоне частот свыше 10 до 20 ГГц.

Комплекс для измерений SMD-компонентов

Таблица 3

Схема	Формулы расчета импеданса	Формулы расчета погрешности измерений модуля импеданса
Reflect	$Z_0 \cdot \frac{1 + S_{11}}{1 - S_{11}}$	$ \Delta S_{11}^{max} \cdot \frac{2 \cdot Z_0}{ 1 - S_{11} ^2} + \Delta Z_0 \frac{ 1 + S_{11} }{ 1 - S_{11} }$
Shunt	$\frac{Z_0}{2} \cdot \frac{S_{21}}{1 - S_{21}}$	$ \Delta S_{21}^{max} \cdot \frac{Z_0}{2 \cdot 1 - S_{21} ^2} + \Delta Z_0 \frac{ S_{21} }{2 \cdot 1 - S_{21} }$
Serial	$2 \cdot Z_0 \cdot \frac{1 - S_{21}}{S_{21}}$	$ \Delta S_{21}^{max} \cdot \frac{2 \cdot Z_0}{ S_{21} ^2} + \Delta Z_0 \frac{2 \cdot 1 - S_{21} }{ S_{21} }$

 $|\Delta S_{11}^{max}|$ и $|\Delta S_{21}^{max}|$ — суммарные погрешности измерений коэффициента отражения и коэффициента передачи компонента на печатной плате, как функции систематической и случайной погрешностей измерений прибора, неидеальности оснастки и алгоритмов исключения подводящих линий;

 Z_{0} – номинальное значение характеристического импеданса подводящих линий 50 Ом;

 $|\Delta Z_0|$ – погрешность определения характеристического импеданса подводящих линий, Ом;

 S_{ij} – результаты измерений S-параметров компонентов.

Описание

Номинальные значения пассивных RLC компонентов представляют собой расчетные характеристики или данные, подтвержденные экспериментальным путем на постоянном токе или в узкой полосе частот. Каждый компонент, помимо номинального значения, имеет набор собственных паразитных параметров, таких как сопротивление, емкость и индуктивность, определяющих его частотную характеристику, при этом степень влияния того или иного параметра может значительно варьироваться в зависимости от частоты. При монтаже компонента на печатную плату к собственным частотно-зависимым параметрам добавляются «внешние» характеристики, присущие контактным площадкам печатной платы. В связи с этим возникает необходимость определения параметров компонентов в широком диапазоне частот, непосредственно установленных на печатную плату, в условиях близких к реальному применению.

Комплекс для измерений SMD-компонентов

Сложность определения параметров заключается в необходимости исключения влияния подводящих линий печатной платы на результаты измерений. Каждая плата состоит из двух коаксиально-микрополосковых переходов и линии передачи на диэлектрическом основании. Для эффективной работы алгоритма исключения и снижения погрешности измерений предъявляются жесткие требования к точности изготовления топологии печатной платы. Каждая плата проходит проверку геометрических размеров и электрических характеристик, чтобы гарантировать значение характеристического импеданса линии (50 ± 1) Ом.

Для исключения влияния подводящих линий используется алгоритм совместного оценивания, который позволяет выделить сигналы, отраженные от входа и выхода коаксиально-микрополосковых переходов, а также оценить комплексный коэффициент передачи подводящих линий. После исключения подводящих линий плоскость калибровки, т.е. плоскость отсчета модуля и фазы комплексных величин, будет проходить в месте подключения контактных площадок компонента.

Программное обеспечение CTS TOOL позволяет провести оценку погрешности измерений параметров компонентов, которая включает погрешность векторного анализатора цепей, погрешность определения параметров печатной платы и погрешность используемых алгоритмов.

Комплект поставки

- Векторный анализатор цепей серии КОБАЛЬТ, обеспечивающий высокую стабильность измерений S-параметров; удаленное управление прибором осуществляться в соответствии с программной технологией СОМ;
- Оснастка для подключения компонента в соответствии с требуемой схемой измерений;
- Программное обеспечение CTS TOOL, предназначенное для управления процессом измерений, обработки и анализа полученных данных;
- Ручной вакуумный пинцет с диэлектрической насадкой для установки и удержания компонента на печатной плате;
- Увеличительная лупа с подсветкой;
- Р Принадлежности:
 - **комплект калибровочных мер или автоматический калибровочный модуль**;
 - фазостабильные измерительные кабели (кабели СВЧ);
 - коаксиальные переходы.
- По согласованию состав комплекса может быть изменен.

Комплекс для измерений SMD-компонентов

Перечень поддерживаемых векторных анализаторов цепей

Таблица 4

Анализатор	Диапазон рабочих частот анализатора	
Двухпортовые приборы		
C1220	от 100 кГц до 20 ГГц	
C2220 (DRA)	от 100 кГц до 20 ГГц	
Четырехпортовые приборы		
C1420	от 100 кГц до 20 ГГц	
C2420 (DRA)	от 100 кГц до 20 ГГц	
DRA – прямой доступ к приемникам		

Векторные анализаторы цепей серии КОБАЛЬТ представляют собой 2- или 4- портовые приборы, управление которыми осуществляется программным обеспечением S2VNA и S4VNA соответственно.

Управляющее программное обеспечение векторного анализатора цепей S2VNA и S4VNA доступно для скачивания совместно с документацией на сайте ПЛАНАР: http://www.planarchel.ru

Комплекс для измерений SMD-компонентов

Порядок работы

- Установка ПО и подключение к анализатору
 - ▶ подключить анализатор к компьютеру с помощью кабеля USB;
 - установить драйвер и управляющее программное обеспечение *S2VNA* или *S4VNA* в зависимости от используемого прибора, если они не были ранее установлены, зарегистрировать *COM*-сервер;
 - ▶ запустить управляющее программное обеспечение. Проверить, чтобы через несколько секунд в строке состояния индицировалась надпись «Готов»;
 - установить программное обеспечение *CTS TOOL*, если оно не было ранее установлено. При установке необходимо следовать указаниям мастера.

> Подготовка к работе

- ▶ запустить CTS TOOL, программа должна автоматически определить прибор, подключенный к компьютеру; при необходимости, нажать кнопку «Refresh»;
- ь выбрать из списка «Connected Devices» прибор и нажать кнопку «Start»;
- ▶ при необходимости, на странице «VNA Settings» ввести параметры векторного анализатора цепей, для применения параметров следует перезапустить CTS TOOL и продолжить работу;
- на странице «Main Table»:
 - ввести данные протокола и персональные данные оператора;
 - выбрать тип измеряемого компонента;
 - при необходимости, добавить необходимое количество компонентов.

Проведение измерений

- собрать схему измерений согласно инструкции CTS TOOL;
- ▶ перейти на страницу «VNA Calibration» и выполнить калибровку анализатора в коаксиальном тракте;
- подключить печатную плату согласно требуемой схеме измерений;
- ь выбрать страницу *Reflect*, *Shunt* или *Serial*, соответствующую выбранной схеме;
- следуя инструкциям программного обеспечения, выполнить измерение параметров печатной платы без компонента; по окончании измерений CTS TOOL проведет исключение подводящих линий оснастки и сместит плоскость калибровки для измерений параметров компонентов в плоскости их подключения.
- установить компонент на печатную плату, используя вакуумный пинцет с диэлектрической насадкой; чтобы убедиться в надежности подключения компонента, рекомендуется проверить повторяемость трасс коэффициента отражения и передачи

Комплекс для измерений SMD-компонентов

в управляющем программном обеспечении; для обзора области контакта компонента и оснастки следует использовать увеличительную лупу с подсветкой;

- ▶ выполнить измерение модуля и фазы S-параметров и импеданса, нажав кнопку «Measurement»;
- повторить процедуру для всех компонентов;
- ▶ для отображения пределов погрешности измерений необходимо в выпадающем списке «Errors» выбрать значение «ON»;
- сохранить или распечатать полученные результаты измерений.
- Возможности программного обеспечения анализ данных
 - сохранение в формате PDF и печать результатов измерений каждого компонента;
 - ▶ сравнение S-параметров компонентов, измеренных в одной схеме;
 - сравнение импеданса компонентов для всех схем;
 - сохранение в формате PDF и печать результатов сравнения;
 - ▶ сохранение в формате PDF и печать протокола измерений.

Основные этапы измерений. Калибровки векторного анализатора цепей.

Для калибровки векторного анализатора цепей необходимо подключить кабели СВЧ и выполнить полную двухпортовую калибровку с использованием комплекта калибровочных мер или автоматического калибровочного модуля.

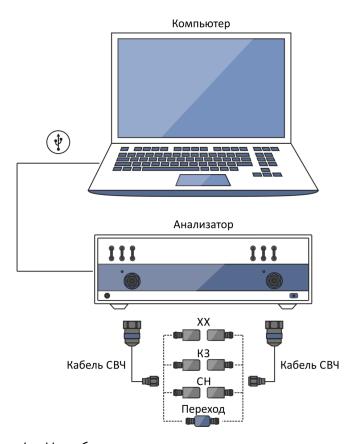


Рисунок 4 – Калибровка анализатора в коаксиальном тракте.

Основные этапы измерений. Измерение параметров оснастки без компонента.

После калибровки в коаксиальном тракте необходимо подключить печатную плату Shunt или Serial, как указано на рисунке 5, и выполнить измерение ее S-параметров без установленного компонента с помощью программного обеспечения CTS TOOL. Программа автоматически проведет исключение подводящих линий оснастки и сместит плоскость калибровки для последующих измерений параметров компонентов в плоскости их подключения.

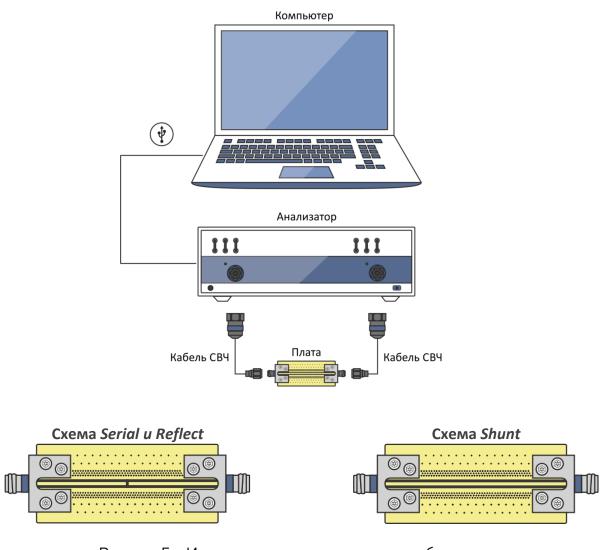


Рисунок 5 – Измерение параметров оснастки без компонента.

Основные этапы измерений. Измерение параметров компонента

в оснастке

После исключения влияния оснастки программным обеспечением CTS TOOL необходимо установить компонент на печатную плату, используя вакуумный пинцет с диэлектрической насадкой. Чтобы убедиться в надежности подключения компонента, рекомендуется проверить повторяемость трасс коэффициента отражения и передачи в управляющем программном обеспечении. Для обзора области контакта компонента и оснастки следует использовать увеличительную лупу с подсветкой.

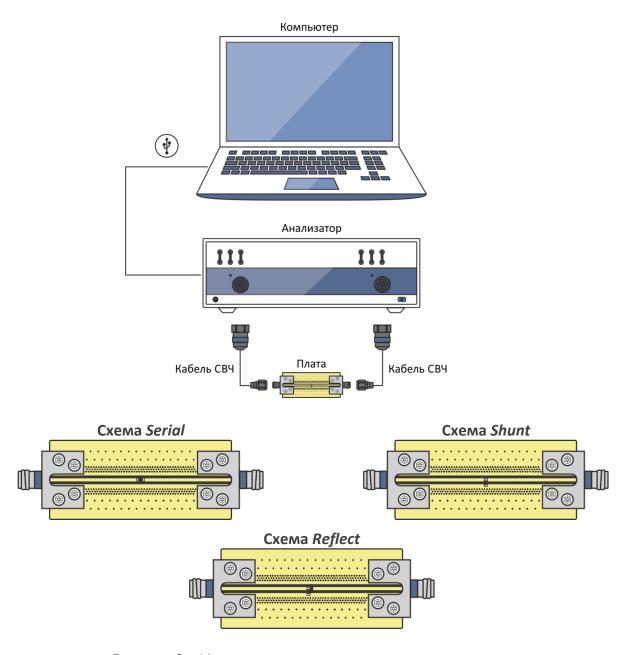


Рисунок 6 – Измерение параметров компонента в оснастке.

Программное обеспечение CTS TOOL

0

Измерение параметров компонентов выполняется с помощью программного обеспечения CTS TOOL.

СТЅ ТООL содержит все необходимые инструкции и схемы измерений. Программа автоматически устанавливает заданные параметры анализатора, такие как частотный диапазон, количество точек по частоте, уровень выходной мощности и полосу пропускания фильтра промежуточной частоты. В процессе измерений СТЅ ТООL автоматически вычисляет параметры оснастки и проводит коррекцию результатов измерений для отсчета комплексных параметров компонентов в месте их подключения.

В программном обеспечении CTS TOOL реализован алгоритм расчета и отображения погрешности S-параметров и импеданса, как функции погрешностей измерений коэффициента отражения и передачи прибора, неидеальности оснастки и алгоритмов исключения подводящих линий.

CTS TOOL отображает результаты измерений в виде графиков. Все графики поддерживают возможность масштабирования. Для их анализа удобно использовать реализованные в программе маркеры. Полученные результаты могут быть сохранены в файл и (или) напечатаны в форме протокола.

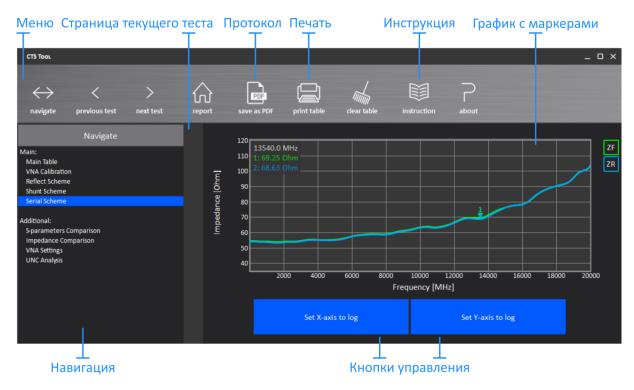


Рисунок 7 – Программное обеспечение CTS TOOL. На графике изображен результат измерений импеданса SMD-резистора 51 Ом в диапазоне частот до 20 ГГц.

Рисунок 8 – Результаты измерений импеданса SMD-конденсатора по схеме Shunt с номинальным значением емкости 10 п Φ в диапазоне частот до 20 ГГц.

Рисунок 9 — Результаты измерений импеданса SMD-конденсатора по схеме Shunt с номинальным значением емкости 10 пФ. Для анализа используется функция масштабирования графика.

Рисунок 10 – Результаты измерений коэффициента передачи SMD-конденсатора по схеме Shunt с номинальным значением емкости 10 пФ в диапазоне частот до 20 ГГц.

Рисунок 11 – Результаты измерений импеданса SMD-катушки индуктивности по схеме Serial с номинальным значением индуктивности 10 нГн в диапазоне частот до 20 ГГц.

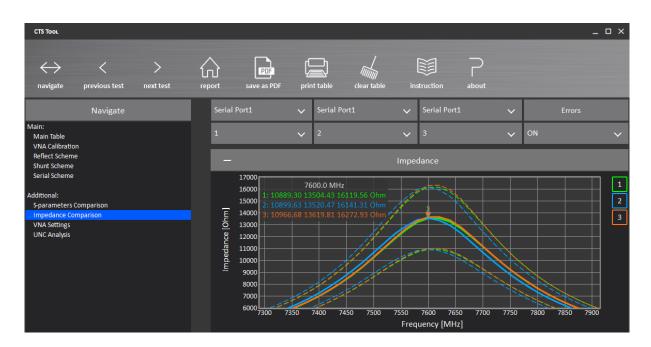


Рисунок 12 – Результаты измерений импеданса SMD-катушки индуктивности по схеме Serial с номинальным значением индуктивности 10 нГн с отображением пределов погрешности. Для анализа используется функция масштабирования графика.

Эквивалентная схема

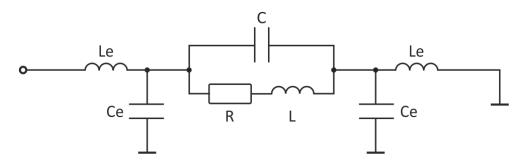


Рисунок 13 — Эквивалентная схема SMD-резистора на печатной плате (схема Reflect); R, C, L — собственные параметры резистора; Le, Ce — параметры контактных площадок печатной платы.

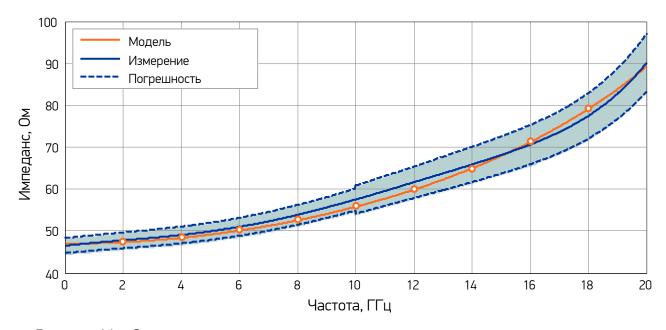


Рисунок 14 — Сравнения экспериментальных данных и результатов моделирования для *SMD*-резистора с номинальным значением сопротивления 47 Ом, установленного на печатную плату.

Пример протокола

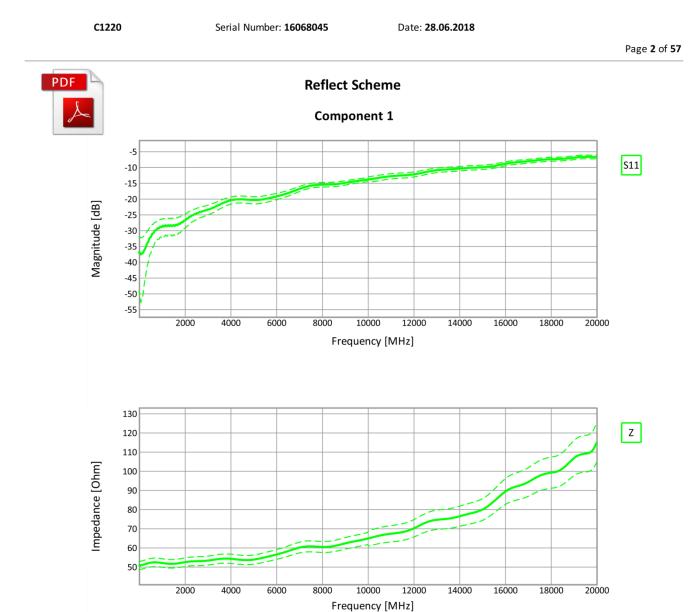


Рисунок 13 – Протокол измерений в формате pdf.

Контактная информация

тел: +7 (916) 623-13-18

https://t.me/Sh_AV

эл. почта: <u>aleksandrshushkov@planarchel.ru</u>